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Thr turbulent state initiated by the electron-beam—ion two-stream instability is inves-
tigated. The spectrum of fluctuations is concentrated on a Cherenkov cone with a single
modulus of phase velocity, azimuthally symmetric around the beam axis. The associated
diffusion in velocity space occurs mainly on the surface of a double cone, complemen-
tary to the Cherenkov emission cone. This model is supported by an experiment in
which the three-dimensional diffusion coeffient is measured with use of space-time cor-

relation functions.

Little is known about the properties of the tur-
bulence generated by the intense-electron-beam-—
ion two-stream (EBITS) instability.! In numeri-
cal simulations, two- and three-dimensional spec-
tra of turbulent fluctuations have been observed.?
In laboratory experiments, however, only one-
dimensional standing eigenmodes of the two-
stream instability have been observed in a bound-
ed geometry.® The only reported observations of
three-dimensional electrostatic turbulence of
which we are aware have been of unstable ion-
acoustic modes.* In this Letter, we present de-
tails of the three-dimensional structure of two-
stream turbulence. Since charged-particle trans-
port properties® are determined by the velocity -
space diffusion coefficient, we have developed a
method to measure this coefficient using space-
time correlation functions.

In experiments on the EBITS instability, an in-
teresting effect occurs when a stationary elec-
tron population is present, as is often the case
when the electron beam is injected and no exter-
nal electric field is applied. The instability-
growth rate can remain large, but maximizes
for a beam speed of about twice the electron ther-
mal speed® [ = (KT, /m,)2]. Thus for a beam
speed v, = 2vp,, oOblique Cherenkov emission can
be expected,” at an angle ¢ relative to the beam

axis, given by
@ =arc cos[2(K T, /m,)V?/ v,]. (1)

In velocity space, the modes of the turbulent spec-
trum will therefore be concentrated on the sur-
face of a Cherenkov cone (Fig. 1) lying along the
beam axis. The modes all have a phase speed ¢
(the phase speed of the most unstable modes) and
each mode lies at an angle ¢ with respect to the
beam axis. Because of wave-particle resonance,
each mode will diffuse particles whose velocity
component along the direction of propagation ¢

is equal to the phase speed ¢. Thus, a mode will
diffuse all particles whose velocity vectors ter-
minate on a plane normal to the phase-velocity
vector at its extremity. The ensemble of such
planes, each perpendicular to a mode on the
Cherenkov cone, generates the diffusion domain
D (Fig. 1). D is the volume exterior to a double
cone aligned along the beam axis with its apex
lying at ¢/cose relative to the origin, and with

an open angle 2(7/2 - ¢). No diffusion occurs out-
side D.

We can describe the diffusion in velocity space
due to a random, homogeneous, stationary, elec-
trostatic electric field, in terms of the particle-
velocity variances. These are obtained by inte-
grating the particle equation of motion along un-
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FIG. 1. Cherenkov turbulence in phase space. The
phase-velocity vectors all lie on a Cherenkov cone, at
an angle ¢ with respect to the beam axis, with a con-
stant modulus ¢. The diffusion planes perpendicular to
each mode fill the diffusion domain D (cross-hatched
region), bounded by the double-cone complementary to
the Cherenkov cone.

perturbed particle trajectories.® The variance
increases linearly with time at a rate given by
the diffusion-coefficient tensor,

= (ATAD) ( q>2 .
BE) = 5 = (L) (BT @),
where ’F'c@) is the correlation-time tensor. This
correlation time can be expressed in terms of

the electric-field space-time correlation function,

7,0 =(E® "1 [ dt{ E4(0, 0)E,;(F =17, 1)). 3)

According to Egs. (2) and (3), the correlation
time ¥ (V) and the diffusion coefficient are both
related to the form of the noise spectrum. How-
ever, 7 (V) is the more convenient quantity to use
experimentally, since it does not depend on the
particular species of particle, nor on the spec-
trum amplitude. Equation (3) will be used to find
¥ (¥) from measured space-time correlation func-
tions. |

@)

Te=w, Y[(v/c) cos(¥ - @) — 11[1 = (v/¢) cos(¥ + @)1} V2

for velocities ¥ lying inside the diffusion domain
D (Fig. 1), and 7,=0 outside D. Here w, is a
weighted mean frequency of the spectrum.®
Figure 2 shows this correlation time, normal-
ized to w,™!, as a function of ¥ for five values of
the angle ¥ relative to the ¥, (beam) axis (¥ =0°,
14°, 26°, 45° and 90°), when ¢ =50°. Note that
T, diverges on the boundaries of the diffusion do-
main D. This result can be understood in the fol-
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FIG. 2. Correlation time 7, (or diffusion coefficient),
Eq. (6), for Cherenkov turbulence. Here ¢ =50° and ¥, is
parallel to the beam axis. TC(‘7) is plotted vs polar
coordinates, for different values of the angle ¥ relative
to the V|, (beam) axis: ¢ =0°, 14°, 26°, 45°, and 90°.
The correlation time diverges on the boundaries of the
diffusion domain D [dashed line in the (v,,v) plane].

In order to find theoretical values for T(%), we
rewrite Eq. (3) in terms of the spectral density
S(w, K) of the potential fluctuations,

7 [ dw &% ki S(w, k)0 (w0 -k )

(V) = =
@ Jdwd?k k2S(w, k) ’

(4)

To calculate the diffusion created by the Cheren-
kov turbulence of Fig. 1, the relevant spectral
density is of the form

S(w,K) = F(w)d(w =Ec)d (@ ¥,° - cose), (5)
where ¥,° is the unit vector along the beam axis.
If the total stochastic velocity diffusion is of in-
terest, then only the trace of the diffusion tensor
is retained. Inserting Eq. (5) into Eq. (4) we can
obtain the corresponding trace 7, of the correla-
tion-time tensor:

(6)

lowing way: For given v, Eq. (4) retains those
values of S(w,k) on the (w,Kk) resonant surface
for which w-k*¥=0; that is, Eq. (4) retains
those modes whose phase velocity w/k is equal to
the component of ¥ along K. Thus instead of the
four-dimensional (w,k) space, one can use a
three-dimensional (w/%,k° phase-velocity space
to describe S. In this space, resonant modes lie
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on the surface of diameter v. For Cherenkov tur-
bulence [Eq. (5)], S is nonzero on the Cherenkov
circle C of Fig. 1 (modulus ¢, angle ¢ relative
to the beam axis). The intersection of this circle
C with the diffusing sphere determines the reso-
nant modes. When V lies within the diffusion do-
main D, the sphere intersects C at two points.
When V¥ lies on the boundary of D, the sphere is
tangent to C, which leads to a divergence. When
¥ lies at the apex of D, the sphere includes all of
the circle C, leading to the d function in the dif-
fusion coefficient.

For given ¢, the divergence occurs once for
Y=0, twice when 0<% <3 - @, and then once when
L) >3im— @. The strongest diffusion occurs not for
particle velocities terminating on the Cherenkov
circle (¥ =¢, v=c), but at the apex of the comple-
mentary cone (=0, v=c/cosp). Because of the
azimuthal symmetry of the turbulent spectrum,
the figure should be extended symmetrically about
the (7., %) plane.

To check these predictions, experiments were
carried out in a triple-plasma device, which is
an extension of the multipole double-plasma ar-.
rangement.'® Three plasmas are located end to
end along a common axis and are separated by
fine mesh grids (30 cm diam). The two end plas-
mas are used as electron-beam and ion-beam
sources. These two counterstreaming beams
enter the central interaction ?egion (15 cm long).
In order to obtain an intense (=1 A) plane beam
of electrons close to thermal speed (v /vp = 1,
V3. =5-10 eV), an extra set of hot tungsten fila-
ments in the electron-beam source is connected
directly to the chamber wall (anode) to replace
the extracted electrons. Ions stream slowly from
the ion source at the opposite side into the cen-
tral region, In the following experiment, the con-
dition were an argon pressure of 4X107* Torr,
T,~3eV, T;~0.2 eV, V=6V, and n,,/n; 20,7
in the central chamber.

As predicted for the electron-beam-—ion two-
stream instability,' a spectrum of turbulent
modes is observed to grow exponentially away
from the electron-beam injection grid, with &; /
k,=0.6. The spectrum peaks in frequency at f,
=300 kHz with Af/f,=3. The spectrum noise pow-
er saturates in about 14 mm with (6n/n),,=0.11,
and then decays. Two-probe spatial correlation
measurements along the beam axis yield a damped
oscillation with 2,=5.1 cm™, Perpendicular to
the beam axis, we find the oscillating behavior of
a Bessel function, J,(k,x), with 2,=5.7 cm™™
This behavior is characteristic of a Cherenkov

k spectrum, peaking off-axis with £,~8 cm ™ at
an angle ¢ =arctan(k,/k,)~48°

Two small, positively biased, spherical probes
(diam =Ap~ 0,5 mm) are used to measure the cor-
relation function. One probe is fixed at a point on
the beam axis defined as the origin (x =0, z =0)
about 5 mm in front of the electron-beam injec-
tion point. The position of the second probe is
stepped along x (perpendicular axis) and z (paral-
lel axis) in small increments, chosen so that the
probe is displaced along a straight line at an an-
gle ¥ relative to the beam axis and passing through
the origin (Fig. 1). At each incremental step
along a given line ¥, the two-probe normalized
correlation function for the electric-current fluc-
tuation
(J,(0, 0, 0)J,(x =7 siny; z =7 cosy; 7))

KT 2(T,2 ]2

C(x,2,7T)=
(7

is taken as a function of the time delay 7, with
use of a 5-MHz correlator. A family of about
twenty such correlation curves (twenty steps
along ¥) is recorded for each value of ¢, and five
values of ¥ (0°, 14°, 26°, 45°, and 90°, same as in
Fig. 2) are used. Each such family of space-time
correlation curves can be processed in the same
way as for previously reported results® for one-
dimensional plane turbulence.

To obtain the correlation time 7,(%) [Eq. (3)] for
each value of ¥ (expressed in polar coordinates
I¥1,%, we graphically integrate C(x, z, 7) [Eq. (7)]
along the unperturbed orbits T =7V,

T.(v, zp):f:d‘r C(x =vTsiny, z =vTcosy, 7). (8)

Thus for each of the five fixed values of ), one
obtains the variation of 7, as a function of the
modulus of v.!* These curves, shown in Fig. 3,
resemble the theoretical results of Fig. 2. There
is a single peak for ¢ =0° two peaks for  =14°
and 26°, and then a single peak for ¥ =45° and 90°,
In addition, plotting the loci of the maxima of 7,
in the (v, vy) plane shows that they are aligned
along two straight lines symmetric about the v,
axis. These lines are just the boundaries of the
diffusion domain, The angle between these lines
gives the opening of the diffusion domain, from
which we can find the Cherenkov angle ¢. The
two lines intersect on the beam axis at the apex
of the complementary cone. The velocity ¢, at
the apex is related to the mean phase speed ¢ of
the turbulent modes by ¢=c, cos¢ (Fig. 1). We
thus find ¢ =49.3°and ¢ =3.16X10° cm/sec for
the turbulent spectrum used in these measure-
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FIG. 3. Experimental correlation-times in electron-
beam—ion two-stream turbulence, obtained from corre-
lation-function measurements, Eq. (9). Same polar co-
ordinates as in Fig. 2. These curves show experimen-
tally that the turbulence has a Cherenkov structure,
with ¢ =50° and ¢ = 3.14 km/sec.

ments.

The experimental curves are strongly broad-
ened in comparison to the theoretical results of
Fig. 2, particularly the ¥ =0° curve and the sec-
ond maxima for the ¢y =14°and ¥ =26° curves.

The reason for this broadening is that the turbu-
lent modes do not all terminate on an infinitely
thin Cherenkov circle. The boundaries and apex
of the diffusion domain are therefore increasingly
broadened as one gets farther from the Cheren-
kov circle.

We can conclude from these results that the
diffusion coefficient is far from isotropic in ve-
locity space. This conclusion should hold as well
for other types of three-dimensional turbulence,

even if the Cherenkov character is not pronounced.

One consequence of this is that the frequently
used isotropic Lorentz pitch-angle collision mod-
el® is not accurate enough to describe two-stream
or ion-acoustic turbulent processes. Further-
more, the quasilinear analysis used here shows
which regions of three-dimensional velocity space
are most affected by the turbulence. Quasilinear
theory does not strictly apply in the region of the
peaks,’® however; the particle trapping times 7,
=(eSk)E,ns/m)V? are calculated to be about 1 um
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sec for the ions and 3.7 nsec for the electrons,
and these times are smaller than the spectrum
correlation time at the peaks.
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