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three (in the unbiased case these would all be
25/o).

Since the relative maximum in density at (0.4
00.4) in Fig. 2 is situated essentially along the
line joining "t" sites, it is relevant to ask wheth-
er this site plays a role as a residence site.
When the density is plotted from one "t"site to
another, the location (0.400.4) is a local mini-
~um and not a maximum; along this line the val-
ues of the density decrease from unity at (-,'0-, )
to 0.63 at (0.31 0 0.44) and then to 0.37 at (0.375
00.375), point S. A concise manner of describ-
ing the situation is that the Ag ions reside at the
"t" sites for about 3 psec, developing a thermal
cloud of half-width 0.6 A in the (100) plane and
move between the "t"sites along rather narrow
channels.

The work reported here makes it quite clear
that using classic notions regarding the interpar-
ticle potentials in ionic materials it is possible
to construct model systems which reproduce with
fair precision the observed structural and dy-
namical behavior of n-AgI. We are therefore
proceeding further on an analysis of the structure
and properties of other forms of AgI as we11 as

other materials like CuI. The analysis of density
fluctuations in n-AgI is now in progress.
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We evaluate the lifetime of quasiparticles in the Fermi glass. An anomalous contribu-
tion to the lifetime is found. It is shown that this effect leads to a T ~ law for the dc con-
ductivity of a disordered system.

The importance of understanding the effects of
electronic correlations in disordered systems
has attracted some attention' in recent years—most notably, in interpreting various observa-
tions in the inversion layer at the semiconductor
surface. In particular, in these systems where
the number of carriers may be varied, density-
dependent effective masses are reported' as well
as an anomalous frequency dependence of the cy-
clotron resonance. ' It is a rigorous result of the
translationally invariant case, however, that for
stationary processes, many-electron effects will
make no contributions to the measurements for
high enough fields. Thus it must be argued that
either the nature of the disorder in these systems

is such as to disturb the homogeneity of the sam-
ples or that many-electron effects behave some-
what differently in non-translationally-invariant
systems.

In addition, the difficulties of incorporating
various other anomalies, such as a free-electron-
like Hall effect' and the presence of Shubnikov-
de Haas oscillations' for densities well into the
localized regime (as inferred from dc conductiv-
ity measurements) within the framework of the
mobility-edge model, has tempted some workers'
to abandon the independent-electron picture alto-
gether. Nevertheless, it should be noted that
there still exists no theory which treats the effect
of a magnetic field on the Anderson localized
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states except for some recent numerical work. '
In addition, the many other successes of this
model —for example, in providing a mechanism
for the observed metal-insulator transition in
many disordered systems and for explaining the
observed minimum metallic conductivity, and
our experience with the effects of interaction on
metals —suggest a closer look at justifying the in-
dependent-particle model by establishing a corre-
sponding quasiparticle picture.

In this Letter, we report and outline the pro-
cedure for deriving some fundamental properties
of the Fermi glass, i.e. , a system of interacting
electrons localized in a random external poten-
tial. Up to now, attempts to generalize Landau's
theory of the Fermi liquid to treat this system
have been hampered by two essential complica-
tions. Firstly, the lack of translational invari-
ance prohibits an algebraic reduction of Dyson's
equation for the single-particle Green's function.
This can be shown to lead to bare particles which
are short-lived near the Fermi level. Secondly,
unlike the case in Fermi-liquid theory where the
unperturbed noninteracting Hamiltonian (Fermi
gas) is exactly solved, the solutions for a single

!
electron in a random potential are not known ex-

actly. Nevertheless, the properties which are
qualitatively understood about the noninteracting
case (e.g. , Anderson localization) are shown be-
low to lead to considerable modification of the de-
cay rates of elementary excitations in the glass.

We will assume that our system has certain
properties. It is well known that degeneracy and
symmetry are intimately related. Since a glass
lacks the usual microscopic spatial symmetries,
we can assume that the states of the noninteract-
ing system are nondegenerate and described com-
pletely by their energy a. We assume, following
Landau, that if we turn on the interaction at the
proper rate that there is a one-to-one correspon-
dence between the interacting and noninteracting
states. Furthermore, since these states have the
same symmetry, the states do not cross and the
new states can also be labeled by their energy.

Because the system we. consider is disordered,
there is no symmetry which guarantees the ex-
istence of a basis in which the Green's function G
is diagonal. Nevertheless, lifetime of an excita-
tion can still be calculated by looking for the poles
of the diagonal matrix elements of G. For the
bare particles we use the o. basis in which the
noninteracting Green's function G' is diagonal.
Thus we write

(~) =G „'(~)+f G '(~)Z, (~)G, (~),

where the symbols e label the exact eigenstates of the noninteracting random Hamiltonian II-, and the
sum is over all single-particle states. The states e diagonalize both II, and O'. It can be shown that
we may formally write the algebraic relation

(a) =& '(~)+G '(~)~ (~)G (~),

where the quantity S~ may be expanded perturbatively in Z ~i shown diagrammatically in Fig. 1 where
the nth term has the structure

Gy&oo ~ CX+ 1M
,(~)~, ,'(~) ~ ~ Z „, (~)

An expansion similar in structure has been de-
veloped in the noninteracting theory, ' the conver-
gence of which establishes the existence of local-
ized single-particle states. In the Fermi-glass
theory the existence of long-lived excitations of
G requires ImS to vanish near the Fermi lev-
el ILL. The first term which just involves the diag-
onal contribution to the self-energy, Z„„(&u), be-
haves similarly to the proper self-energy which
appears in the liquid theory, and ImZ«(&u) van-
ishes near p since only processes which decay
through many-particle states are allowed. Sub-
sequent terms of S~ which contain off-diagonal
matrix elements of Z(&u) lead to finite contribu-
tions to the imaginary part since decay to single-

! particle states are permitted. These occur since
there is no symmetry that excludes single-parti-
cle decay in the same way that momentum conser-
vation does in the Fermi liquid.

In order to find a basis which avoids this diffi-

Sa ((u) — QZ + iI a, ga + ~ ~ ~

FIG. l. Renormalization of the proper self-energy for
the diagonal part of the interacting Green's function.
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culty we define a frequency-dependent single-par-
ticle Hamiltonian by writing Dyson's equation in
the form

ag a~~ pa~ a„' "a, a,
~z", , ~s

[(u -H, —Z((u)]G((u) = 1.

In the basis in which H, +Z(&u) is diagonal [the
m(co) basis], the eigenvalues determine the poles
of G. However, Z(cu) is not Hermitian and the
eigenvalues of H, + Z (&u) will, in general, be com-
plex so that the corresponding states wi11 decay.
This is essentially a device for introducing an
absorbing medium so that all single-particle
states will decay through the many-particle sys-
tem. The price is a non-Hermitian effective
Hamiltonian which must be solved separately for
each frequency co. In general, both the eigenval-
ues and eigenvectors of H, +Z(~) will be frequen-
cy dependent.

By writing G(ur) in a representation which ex-
plicitly exhibits its frequency dependence (Leh-
man representation) it is readily seen that G (co)
is Hermitian for ~ arbitrarily close to the chem-
ical potential p.. Therefore, the eigenvalues of
H + Z(ay) must also be real at ~ = p, and thus the0

FIG. 2. Lowest contribution to the proper self-ener-
gy with nonzero imaginary part.

excitations at the Fermi energy are stable.
In particular, we evaluate the rate at which

lmZ(co) goes to zero near p. The imaginary part
of the eigenvalues of the effective Hamiltonian,
and therefore the poles, will be dominated by this
quantity. The Hartree-Fock terms give no imag-
inary parts; the lowest-order diagram which
make a contribution are shown in Fig. 2. To em-
phasize the localized nature of the noninteracting
states a we indicate the "propagators" as hatched
lines. It is straightforward to show that the usu-
al phase-space considerations lead to a (e —p)'
contribution (for both diagrams) to ImZ(&u) which
is, of course, the standard result. Modification
of the lifetime occurs from consideration of the
vertices. VJe may write the interaction as

. . . , = fd~ fdic q, (x)p, (7) P7-y)q, (y)y„,(y), (3)

where U(x -y) is the two-particle interaction and cp . are the single-particle localized states which be-
have at long distances from their centers as

y (F)=C„P7)exp(-X„)z F~).-
Here C„(x) is a well-behaved random-phased function which is needed for orthonormality. The state
falls off exponentially with localization length A. '. Thus overlap with other states at long distances
is exponential. Stability of the localized solutions requires the overlap matrix elements of any pair of
such states to be less than their level spacing. In addition if the energies of a pair are E and E' where
~E E'~ &dE, -the two states must be a distance of order R apart, where R is given by

p[—I &/(E, —E.)I
"'- I&/(E. —E.)I "']&.. . , , ,

where U. . . ., the reduced interaction, has a
finite value at p. , and X =h&'3/4N(p)m. As ar ap-
proaches p, using (6), it is simple to show that
ImZ t(&u) approaches zero. Thus for v near p,

the major part of the effective Hamiltonian, H,
+Z(p) has real eigenvalues. Using the standard
techniques of Rayleigh-Schrodinger perturbation
theory, and appealing to the general principles
of adiabatic continuity and renormalization, we
find the imaginary correction to the eigenvalues

of the effective Hamiltonian to be

sgn(p - (o)((u —p)'c

where h is proportional to the square of the ef-
fective interaction.

It can also be shown' that further contributions
have the same type of exponential behavior, al-
though some may contain higher-order power pre-
factors. Thus, although X and h may be renor-

with N(E) the density of states per energy per volume. This correlation, inherent in the energy and
distance scales of the unperturbed system, severely modifies the vertex contribution in Eq. (3), since
for low energy or low-temperature processes only states near the Fermi energy are important. Spe-
cifically, evaluating Eq. (3) using the asymptotic form (4) we find
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o=f(r e 8dZ,

where e 6~ is the probability that a many-elec-
tron state of energy E is excited. In a simple
Boltzmann theory, for hopping particles, cr~ may
be taken to be proportional to the scattering rate
for a quasiparticle excited to energy E above the
Fermi level. Using the result for the lifetime in
(7), the integral in (8) is easily evaluated and
gives a temperature dependence, for low T, of

(8)

v~ exp[- (i/T)~'],

which is often observed in disordered systems.
The important point is that this T'~' law (which
is easily. shown to be T'~' in two dimensions) is
derived from a purely electronic theory without
phonons. A similar temperature dependence has
been derived by Mott from phonon considerations
and is the well-known theory of variable-range

malized, the lifetime of the quasiparticle states
is dominated by an exponential of the form (7).
This result is in disagreement with the result ob-
tained by Freedman and Hertz, "who find no
modification from the liquid case. This is be-
cause of a failure to include the energy depen-
dence of the matrix element. We would also like
to point out that it has been implicitly assumed
that interactions can generate continuum-like be-
havior. This matter will be discussed more fully
elsewhere. '

Thus, we find proper quasiparticles whose life-
time is large near p,. In the absence of phonons,
impurities, or any other scattering mechanism,
we may use this result to evaluate the contribu-
tion to the conductivity. The dc conductivity v,
at finite temperature 1/P, may be written as

hopping. The standard T' contribution, implied
by the work of Freedman and Hertz should, if cor-
rect, show up at low temperatures. Experiments
at temperatures in the millikelvin regime" on
two-dimensional inversion layers find T' ' be-
havior.

As a final note, we wish to point out that in the
extended regime although the bare states are still
not long lived, there will be no exponential part
in the lifetime. This is because there is no ex-
ponential contribution to the matrix elements due
to the spatial distribution of the states.
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