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Sidebands in Strong-Field Resonance Fluorescence
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It is shown that consideration of cooperative atomic behavior in the analysis of reso-
nance fluorescence leads to the prediction of additional sidebands.

Resonance fluorescence has become the subject of considerable interest in recent years. Theoreti-
cally, ' ' it is an excellent vehicle for modern developments in quantum optics; experimentally,
allows the utilization of the high spectral purity of strong laser fields. Almost all the recent theoreti-
cal work refers to the fluorescence of independent "two-level" atoms, and predicts the interesting
phenomenon of reemission, for a sufficiently strong irradiation field, of three frequencies: the inci-
dent frequency ~ and two sidebands at w+ ~, being the Babi frequency. The effect of cooperative
atomic behavior —a subject of great interest in connection with other phenomena associated with a col-
lection of bvo-level systems, ' such as superradiance and superfluoreseenc —has received little atten-
tion in the treatment of resonance fluorescence. This deficiency is aggravated by the fact that the only
bvo discussions of the subject that apparently exist in the literature'" make contradictory predictions
concerning the effect of cooperative behavior on the number of sidebands: In one' I find the statement
that such behavior produces additional sidebands, while in the other' it is claimed that the number of
sidebands remains unaffected. Experiment, so far, has verified the existence of the first pair of side-
bands, ' but no effort has been made to look for additional, further sidebands. It is the purpose of this
Letter to discuss the appearance of sidebands in a strong field, and to present arguments for expecting
additional sidebands to result from cooperative atomic behavior. These arguments would make experi-
mental detection of the additional sidebands an effective demonstration of the type of cooperative atom-
ic behavior widely assumed in the treatment of collections of two-level systems.

Consider a number N of identical two-level systems, all coupled identically to the electromagnetic
field. They can be described as a single angular-momentum oscillator (AMO) of total angular-momen-
tum quantum number I-o, which may be regarded as the cooperation number"; maximum cooperation
is indicated by L, = &Ã. With use of the rotating-wave approximation, the total Hamiltonian is given by

H = hei, ++~@co~(a~ a~+&) +s@Q,(y~a, l + y„*a„l+)+-,'S(ya*l +y*al, ).

Both the model and the notation are the same as that of Ref. 3. The AMO variables are the (dimension-
less) angular-momentum components l„ i» and l„satisfying commutation relation [l„lJ =i@i„etc.,
with l, = 2 ' ' (l, + il,); the variables of the @th electromagnetic-field mode, of (angular) frequency v„
are a„and a» satisfying [a„,a„]=1;a and a describe the prescribed irradiation field, which, for
simplicity, I take to be exactly on resonance and of constant amplitude; the y, 's and y's are the appro-
priate coupling constants. Introducing the reduced" variables A.» L„and L„defined by a~=- A~
&exp(-i&a„t), l, = L, exp(+i&st), l, =L-„respectively, and utilizing the definitions

8=- &i+,y„*A,exp(-ivg), A =--,'iy*a expi~t,

where v, =—(d& —, I obtain, for the Heisenberg equations of motion,

L+ =(4*+8t)Ls, A~= —siy~L exp(iv„t), I,, = —[I+(A+8)+ (A*+8t)L ].
For sufficiently weak coupling between the AMO and the radiation field, it has been shown' that the
field equations yield, approximately, 8(t)= 8,(t)+aL (t), with

8.-=siZ~y~*&~(0) exp(-iud), o' = ~4 ly(~)l'p(~),

where ly(&u)P is the average of ly„l' over all h's for &u, near &u, and p(v) is the mode density at ~. The
atomic equations of motion then become

I+ =(4++8ot)LS+nL~Ls, L =(L+)t, L3= —[L+(A+So)+(4++8ot)L ]—2nL+L .
The initial state of the radiation field is taken to be the ground state, so that (I8,t =0 and 8,1) =0. An
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important feature of the present formalism is the fact that the equations of motion are valid both quan-
tum mechanically and classically, the initial classical field conditions being Sp =Sp 0 The classi-
cal analysis may be applied only for I-p sufficiently large, of course, with some additional restriction
which is of no present concern. '

The expectation value P of the power radiated by the AMO, the fluorescence, is given by +,I&a„A„tA~)

+c.c. From the equations of motion one gets

P(t) =Q, ,'(y„)'—+~,f, dt, (L, (t)L (t,)) exp[-iv, (t -t,)]+c.c.

Utilizing the fact that the main contribution to the summation comes from the region of ~ near &, and
approximating the summation by an integration, I obtain

P(t) = fo du~4'(e~, t), +((ul„t)= (n/w—) S&uf dT(L+ (t)L (t —T)) exp[-i((u~- &u)r]+c.c.

If, for large t, P(t) becomes independent of the time, a steady-state situation exists. We can also
regard the fluorescence as a steady-state phenomenon if the average of P(t) over a reasonably short
time (say, a few periods of the Rabi frequency) is constant. I anticipate this to be indeed the ca.se for
sufficiently large i, and take e(~~), given by

+(~&)-=(~/&)N~f, «&L, (&)L (& -T)),„exp[-i(~,—~)~]+cc.
where the subscript "av" indicates an average over t, to be the power spectrum of the fluorescence.
This expression is valid both classically and quantum mechanically.

The above theory will be applied first to a two-level system (Ti S). The atomic equations simplify in
this case to

i+ =(A++8o )L3- gnL~, L =(L~), Ls= —[L+(A+8o)+(A++8o )L ]- (oL~+ )2.

These equations have been solved explicitly' for (Lg and (L,). In the absence of an irradiation field
(A =0), (L, (t)'t decays as ezp(- &t) to its ground-state valu=behavior that exhibits o.'as the Weiskopf-
Wigner decay constant. In the presence of a strong irradiation field (IAI» o.'), (L,)= (L,~'~ (t )) ezp( ,nt), —

where (L,~o~(t)) is a sinusoidal oscillation of (angular) frequency &, the Rabi frequency, defined by 0'
= 21AI, and is the solution of the atomic equations of motion for (L, (t)) when radiation is ignored. For
t»n ', the TLS equations for L, yield

(L+(t)L (t -T)) =~0'fodt, fo dt, (L,(t,)L,(t,)) exp[- pu(2t -v -t,-t,)].

The expression for (L,(t,)L,(t2)) can be calculated from the TLS equations of motion using an approxi-
mation which is based on neglect of commutator s of field variables and atomic variables in terms that
contain a product of the factors y (or y~) and y„(or y„*)." For simplicity, consider only the result to
the lowest order in o.'/0, valid for strong fields. One obtains, for sufficiently large i,

«.(i)L.(i + n)& =kexp(- -'~ I@I)[con —k(~/fl) si~lql],

(L+ (t)L (t —r)) = ~[exp(- ~o'T) +exp( ~us) coS-QT],

6'(,) =( '/4 )~ (l[(l )'+( .— )']'+-'. [(l )'+( .— -&)']'+-', [(l )'+(,— +&)'1'].

This result is consistent with previous work, "and displays the two sidebands displaced from the main
peak by the Rabi frequency O. As the field becomes weaker, the closed-form result for g(&„) (not pre-
sented here) shows that the two sidebands coalesce with the main peak. ' A possible intuitive explana-
tion of the presence of three peaks, even though the oscillation of (L,) (or (L+L )) is damped complete-
ly, lies in the existence of a continuing' partial sinusoidal modulation of the atomic radiation (the mod-
ulation must be only partial if there exists a central peak) together with a spread —due to quantum-
mechanical uncertaintie —in both the modulation frequency and the radiation rate.

I turn next to the case of cooperative behavior. In order to concentrate on the essential aspects of
the present argument and to simplify the mathematical disucssion, I consider large cooperation, that
is I-po &, and the field sufficiently strong so that 0» nLp. In this limit, the AMO may be regarded,
essentially, as a classical system. ' Interpreting the equations of motion classically, one can convert
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them into

L+(t) =[L+(0) +(A*/u)]exp[uL, J, dt, x(t, )] —(A*/u), x —SuL~x+[Q'-u'L, '(1-x')]x=0,
where x= L,-/L, . Neglect of the u'L, ' term compared to Q' yields

x 3ALpxx + x =0.

If x(t) =0, a possible solution, the power radiated is unmodulated. All other solutions of the last equa-
tion can be shown to be periodic. They are not, however, sinusoidal, and thus contain harmonics.
Physically, the effect of the n term in producing harmonics is explained by the fact that the ascent of
L, is slowed by radiation while the descent of L, is hastened by radiation. An equivalent equation for
x(t) is

x(t) =x@~(t) +3(uLJQ)J dt, x(t )x(t,) sinA(t -t,),
where xt'~(t) is a solution of x+Q'x =0, andy may be regarded as the zeroth-order solution with respect
to the parameter uL, /Q. Settingx' (t) =x, co&t and neglecting a first-order correction to the funda-
mental, one obtains, up to first order,

x(t) =x, cosQt +2 (uI.,/Q)x, ' sin2Qt.

Now, L+ (t) is the complex amplitude of oscillation of the AMO. It is clear, from the exponential form
of L+ (t), that this oscillation will be modulated not only at frequency Q but also at multiples of Q.
Since the spectral resolution of modulated oscillation contains sidebands at all the modulation frequen-
cies, one should expect sidebands at multiples of ~." Substituting for x into L+ and its complex con-
jugate, we obtain, from (L+(t)L (t T))»-, the power spectrum of the radiated field with sufficient ac-
curacy to include the sidebands at u+ M, the result being

ti'(&o~) = u KtoL, [(1—x,')5(&d„—&u) +4x,'[5(to„—to+ Q) +6(to„- to-Q)]

+~(uL JQ)'x,4[5(to„- (u +2Q) +5((o~ —(u —2Q)]}.

The simple classical model that has been used contains no mechanism for line broadening, so that the
spectrum is infinitely sharp, of course. However, it is reasonable to expect that such a mechanism
will not affect the existence of sidebands at &u+ 2Q. The ratio of the strength of the second pair of side-
bands to that of the first pair is given by 4 (uL JQ)'x, '. Since I have assumed the strong inequality
uL, /Q «1 (and noting that 0 ~x,' ~ 1), the second pair of sidebands may, perhaps, appear too weak,
in comparison with the first pair, for experimental detection. However, these sidebands indicate res-
onances that may be detectable if one is looking at a small frequency region that contains no other res-
onances. Furthermore, the smallness of uI, /Q was used mainly in order to facilitate the calculation.
One needs only 4&L, -0 in order to separate the sidebands from the central peak in a TLS, for in-
stance. ' Observation of the additional resonances would —because of its qualitative natur —be a rather
dramatic verification of the fact that a number of two-level systems interacting with the optical radia-
tion field may be regarded under certain conditions as a single, classical, angular-momentum oscil-
lator.
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A molecular-dynamics study of silver diffusion in superionic conductor u-Agl is per
formed. Interionic potentials are constructed using Pauling's ideas of ionic radii. The
diffusion constant for sQver and its temperature dependence are in good agreement with
experiment. Good agreement is also obtained for the silver density map with the experi-
ment of Cava, Reidinger, and Wuensch.

n-AgI has been extensively studied' because of
its interest as a solid fast ion conductor (often
called superionic conductor). In this Letter we
present a molecular-dynamics (MD) study of this
material. Our calculations show that in the com-
puter model the diffusion constant of Ag+ and
their distribution in the interstices of the ther-
mally agitated iodine lattice are faithfully repro-
duced. In addition, MD provides a detailed pic-
ture of the complete process of self-diffusion.
The central issue in all such calculations is the
construction of potential functions which, when
used in the MD calculations, produce structural
and dynamical correlations which compare favor-
ably with those observed in the laboratory. The
MD trajectories then porvide a wealth of micro-
scopically detailed information which can be very
hard to obtain by conventional experimental
means. A study of CaF, along these lines has al-
ready been reported. '

For CaF, the ionic model given by Kim and
Gordon' is sufficiently good. ' In O. -AgI this prob-
lem is not so straightforward. We have construct-
ed effective pair potentials which provide a sim-
ple means of describing, with reasonable accura-
cy, the structural and dynamical properties of
o. -AgI. Schommers4 had to use quite unphysical
forces to keep the iodine lattice vibrating as a
stable structure; in his model each iodine was
attached to bcc lattice position by harmonic
springs. In our model no such unphysical ele-

ments have been introduced. For AgI, we use

A;~(o;+ o~)" Z; Z~e
i) &n

+

——(o. .Z. +a Z )——e W;~
s i g j ~4 ~6

where i, j describe the type of ions; A, ~
the re-

pulsive strength; o,, oz the particle radii; a, , n&
the electronic polarizabilities. If o s, o.'s, and
8 's are known, we need to determine five param-
eters (namely A,.~'s, n, and (Z,. )= ]Z& ]). By as-
suming A,.&=A, the situation is considerably sim-
plified. The repulsive term then implies that
each ionic "contact" contributes energy A, i.e.,
the coefficient of x " is scaled according to the
sum of particle radii. Low-temperature crystal
structure, cohesive energy, and compressibility
may be used to determine these three parameters.

However, AgI, and o.-AgI in particular, pose
special problems in this respect. It is certainly
not purely ionic and the estimate of the cohesive
energy from the Born-Haber cycle can be in con-
siderable error. The y-AgI compressibility,
however, is known' (=1&10 " cm'/erg) and from
phonon dispersion measurement' there is evidence
of IZI=0. 6.

As to the o's, Pauling's' concept of ionic radii
is a means of expressing the bond length. Using
the concept literally, we write o „+o, =Ag-I dis-
tance and 20& = I-I distance. Because of the large
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