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It is rigorously proved that the analog of free energy for the percolation models has a

singularity at zero external field as soon as percolation appears. The singularity is an
essential one at least for large concentrations. Results on the asymptotic behavior of
the cluster-size distribution are also obtained for percolation models and for the Ising

model at low temperatures.

In recent years, the ideas and results of perco-
lation theory have found wide use in the physics
of disordered systems.! In particular, the analo-
gy with second-order phase transitions has been
elucidated, following the work of Fortuin and
Kasteleyn.? What resulted from these investiga-
tions is that a quantity analogous to the free en-
ergy of one phase can be defined for the percola-
tion model on any lattice by

S = 35 SR ple,

where p is the probability that each site of the
lattice be occupied, independently of the other
sites, # a parameter playing the role of the ex-
ternal magnetic field in ordinary phase-transition
problems, and P,(p) is the probability that the
origin belongs to a cluster of size n., A cluster
is a set of occupied sites connected by the bonds
of the lattice, and completely surrounded by emp-
ty sites. Moreover, f,(k) is evidently the generat-
ing function of the various moments of the cluster-
size distribution which are of physical interest
in the percolation problem,

Since f,(0) <1, the function f,(%) is analytic in
h for Rek=0, and an interesting question is there-

fore to understand the connection between the ap-
pearance of an infinite cluster above the percola-
tion threshold p., the analytic properties of f,()
at #=0, and the behavior of the cluster-size dis-
tribution P, and its moments {|C|"). What we
have done is to prove rigorously that these quanti-
ties have qualitatively different behaviors below
and over p,.

Our results for the percolation problem on the
square lattice in v dimension (v >1) are summar-
ized in the following theorem: (1) For p <p,(v)
<pv), f,(h) is analytic at 2 =0, P, decays expo-
nentially, and {|C|") behaves as K,"n!, (2) For
p>pv), f,(n) is singular at 2=0, P, does not de-
cay exponentially, and {|C[")=zK,"|v/(v - 1n]1,
(3) For p>p,(v) >p(v), the singularity of f,(r) at
h =0 is an essential one and

exp(_an(v—l)/ll) sPnSexp(-a'n(”'l) /u) ,

n v < n nf_V
K, (V_1n>!\<|Cl >$K4 (U—:-in>!.

We will first give the intuitive basis of the proof,
which is by itself of interest for an understand-
ing of the physical phenomenon involved, then
we will sketch the proof, and finally we will dis-
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cuss these results,

The intuitive basis of the proof is the following:
In very large but finite clusters, point which are
far from the external boundary can be connected
to it above the percolation threshold. Therefore,
the effective volume of the clusters with a given
external boundary should be of the order of the
geometric volume included inside the boundary,
multiplied by the percolation probability. How-
ever, below the percolation threshold, the effec-
tive volume should be only of the order of the
boundary. Let us now sketch the proof of part (2)
of our theorem, Part (1) is obtained through a
bound on the number of clusters of size », and
part (3) by an elaboration of the methods used for
part (2). Detailed proofs and other results will
be given elsewhere.?

For simplicity we restrict ourselves to the two-
dimensional square lattice Z2, If g=1-p, the
“free-energy density” f,(%) can be written as

() = T—Te'hlcl
fp _ca%} c p

=§e—hl¢lpICIqlacl’ (1)
1

where the sum runs over all the finite clusters C
containing the origin in the first expression and
over all possible shapes of finite clusters in the
second one. |C| denotes the size of the cluster
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FIG. 1. A contour y.

C and | 8C| the size of its boundary, i.e., the
number of points of Z*\C which are nearest neigh-
bors to some point of C.

In view of the positivity of the coefficients in the
series (1), the singularity at 2 =0 will imply the
nonexponential decay of P, and can be obtained
from a lower bound on the moments so that

(e =1y=Fq, clplelgloc, (2)

The contribution of each cluster will be separated
into a surface effect and a volume effect., We
associate therefore to each cluster C a contour y,
corresponding to the outer order border of C;
V(y) are the points of Z?2 inside v, Ay the set of
points in V(y) nearest neighbors to some point of
the outside of y, and 6(y) is V(y)\ Ay (see Fig. 1),
Hence, we can rewrite (2) as

(lelr-n=yplariglol 5 (]Ay|+lEI)"p|E‘q|aE”9(7)‘, (3)
Y, ECce(‘/)
E°/Ay
where the sum on E runs over all subsets of 6(y) such that the points of £ and of Ay are connected.
Now Egq. (3) can be transformed into
n
(lclv= Zplmlqlﬁﬂ > aylm 5 L C R X s (4)
7 m=0

xmée'( Y)

where agy)(x,,..., x,) denotes the probability |
inside the box 6(y) that the points x,,..., x,,
possibly identical, of 6(y) and the points of Ay

are all connected. In the derivation of Eq. (4)
from Eq. (3), we have used the probabilistic
interpretation of p | £lgl&N0N|,

We will restrict now the summation in (4) to the
contours y; which are the squares of side 7; Ay
is then by itself a connected set and if Xa; A7 de-
notes the characteristic function of the event:

“x; is connected to the boundary Ay of 6(y)” so
that

m
A
Aoy Xy eeny ¥y <H Xx; 7>6(*/)-
. , i

134 .

Now from Harris? or Fortuin, Ginibre, and
Kasteleyn we know that if g;,..., g, are m in-
creasing functions over the configurations, that
is g{X) = g,(X") whenever the set of occupied
points of a configuration X contains the set of
occupied points of the configuration X’, then

(u-eer 202 T (a0

Since the functions Xa; A7 are increasing functions
over the configurations of 6(y), we get

m
Aoy Xy eeey ) = T 2onx ).
i1
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But agcyy(x;) 2 P., where P, denotes the perco-
lation probability and so we obtain

(el=nzmplolgleriay |+ e D, (5)
Y

The term I =n, for example, leads to {|C|"~")
=K ,"(2n) ! whenever P,>0. The terms which
create the divergence are those coming from
P.16(y)|. They represent, as claimed previous-
ly, the contribution of the effective volume of the
clusters.

Concerning the percolation problem, our re-
sults give a detailed description of the behavior
of the cluster distribution function. In particular
the result on the moments implies that if P,
~exp(—an*) then for p>p,, &<(v-1)/v. More-
over, exact behavior of P, is obtained rigorously
for large concentration. Our theorem general-
izes to other “realistic” lattices such as the tri-
angular, hexagonal, fcc lattices. In contrast, for
the Bethe tree, P, decays exponentially every-
where, except at p..?> In fact, our results con-
tradict some of the claims made in the litera-
ture, but they also yield a rigorous basis to
some conjectures by Stauffer® obtained from an
analysis of numerical studies,

Our result can be generalized to the case of
the interacting percolation problem where the
probability of occupation of each site is no longer
independent but is given through the probability
distribution of some equilibrium system of statis-
tical mechanics. As an example, we obtain that
for a wide class of equilibrium states, including
the Ising model, P, no longer decays exponential-
ly as soon as there is percolation,

The situation that we get for the cluster generat-
ing function has to be paralleled with the Andreev-
Fisher conjecture’ on the existence of an essen-
tial singularity of the free energy at phase transi-
tion points. Our result can be seen as a rigorous
proof of the analog conjecture for the percolation
problem. However, one has to remark that in the
case of Andreev and Fisher, for example, in the
low-temperature Ising model, one has a reason-
able approximation of the free energy by restrict-

ing to the compact clusters, which are the first
term in a low-temperature expansion, and this
yields a singularity. There the problem is then
to know whether going beyond the approximation
would make the singularity disappear. In con-
trast, in the percolation problem, one does not
have such a reasonable approximation, and in fact
the contribution of the compact clusters to the
cluster generating function yields an approxima-
tion to f,(k) which is analytic and not singular at

i =0 as can be seen by explicit computation. In
percolation, the singularity does not come from a
special simple class of clusters but only from an
average over the clusters with a same external
boundary. This average yields an effective vol-
ume to the clusters over the percolation threshold
as we have proved,
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