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The observed condensation of DNA in salt solution in the presence of a second polymer
of lower molecular weight is treated by straightforward statistical mechanics. We ne-
glect the details of DNA structure and represent it by a simple polymer of large molecu-
lar weight interacting via single-contact repulsive forces with a large number of smaller
polymers. In this approximation, the derivative of free energy with respect to the size
of the large polymer shows a singularity at a critical concentration of smaller polymers.

In recent years a large body of experimental
work has accumulated on the collapse of DNA in
water-salt solutions in the presence of a second
polymer of lower molecular weight. This phenom-
enon, called 4' condensation, has been reviewed
by Lerman, and it has significant biological rele-
vance since DNA of bacteriophage T4 at certain
concentrations of internal proteins can collapse
in a similar manner. '

In a typical experiment, DNA of a virus with
molecular weight of about 10' is dissolved in a
salt-mater solution of approximately 0.5 molar
salt and 10 "molar DNA. If now one adds to
this solution a second polymer [typically poly-
ethylene oxide (PEO)] of a molecular weight of
about 7000, the hydrodynamic properties of the
system DNA-salt-water-PEO undergo drastic
change (transition) at a critical concentration of
PRO, in this case about 0.3 molar. The change
in the hydrodynamic properties such as viscosity
or sedimentation coefficient indicate a drastic

and sudden change in the mean volume occupied
by DNA moleeules. '4 Spectroscopic and x-ray
data also support this interpretation. " Thus
experiments point to the interpretation that a
concentration-dependent collapse of DNA (large
polymer) is brought about as a result of dissolu-
tion of the second polymer of lower molecular
weight at a critical concentration of the latter.
The process is reversible and has the nature of
a phase transition.

Lerman has attempted to explain this phenom-
enon by simple thermodynamic arguments and
has concluded that dominant forces causing the
collapse are repulsive forces operating between
the large and small polymers. The transition is
relatively sharp in DNA solutions because of its
considerable size, but polymer fractionation ex-
periments in which a polydisperse polymer solu-
tion progressively precipitates in fractions of de-
creasing molecular weight must be related to
this phenomenon.
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U„({R))= U„({R))+U, , ({R)),
U„,({R))= Q M(Z, ,),o~i &j~N

N+1

U, , ({R))= Q ~(~,„,).
i =1

(2)

(3)

Here {R) is the SN-dimensional position vector
of the polymer with N elements. The potential
energy is split into two parts: ULJ the contribu-
tion due to l.ennard- Jones (dipole, electrostatic,
etc.) forces between any two elements and U, ,
the contribution due to (short-ranged) bonding
forces operative between any two adjacent ele-
ments along a chain. The form of U, , is such
that a chain will be formed. The configurational
partition function Z for a single polymer can now

be written as"
1Z= ~ ~ ~ exp — u P, , I'd R

kBT oui&i

N
I" = g r,(It. ,. .),

(4)

2 ba 2bio

In what follows we attempt to show the exis-
tence of a phase transition in a model system by
straightf orward statistical mechanics. Experi-
mental evidence indicates that the role of salt in
a DNA-polymer solution is to overcome the elec-
trostatic repulsive force within the DNA chain
by counterion binding. At the outset, considera-
tion of electrostatic forces will unduly compli-
cate the problem. We have considered the con-
densation of a large nonpolar polymer in interac-
tion with a large number of smaller nonpolar
polymers. We show that in such a system, the
derivative of free energy with respect to average
size of the large polymer depends on the concen-
tration of the second polymer. Moreover, the
free energy and its derivations have a singularity
at the critical concentration of the second poly-
mer.

We consider a single large polymer with N1
statistical bonds in a solution of volume V. With-
in the same volume, n smaller polymers each
with N, statistical bonds are immersed. By con-
sidering the solvent as a continuum, the poten-
tial energy Usp({R)) for any single polymer can
formally be written as

Flo. 1. Diagramatic representation of the interaction
between a large polymer and small polymers.

In this model T,(R, ~;,) is taken to be a Gaussian
function in R. . .with a mean square (A;;,')
= b'O'. Thus the mean bond length is b but it may
be varied through a multiplying factor v. u(R, ,)
is as usual the nonbond interaction potential. The
mean extension of the polymer in space such as
the mean-square radius of gyration can be varied
in this model through the choice of parameter 0
which is sometimes called the expansion factor.
Thermodynamic quantities, such as mean poten-
tial energy, thus depend on the value of 0.

The system under investigation in this work
contains one large polymer of N, segments and n
polymers of N, segments each. The total poten-
tial energy of the system will now be the sum of
n separate energies given by Eq. (1) for each of
the n small polymers of N, bonds plus a single
energy of the form of Eq. (I) with N, bonds and
an interaction energy between separate polymers.
The experimental conditions indicate that the
dominant interactions giving rise to collapse are
those between small polymers and the large one.
The reason for this is that the elements of the
large polymer (DNA) are distributed over a much
larger volume than those of the smaller polymers,
which despite their higher concentration are gen-
erally confined to small regions around the cen-
ter of mass of each polymer. A quantitative
analysis will not be made here of the relative
contributions of these separate terms. Since we
are studying the behavior of the large chain, the
interactions between small polymers will be ne-
glected; thus the interpolymer potential energy
U j Qt is given by

n

U, „,= P Q Pu(Z„."), (7)
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where u(Bz, ~) is the interaction between element number I of the large polymer and element number j
of the kth small polymer (the elements of the large polymer are designated by capital letters and those
of small polymers by lower-case letters). The total configurational partition function of the system
can now be written as

(8)

R R 0 g 0 R A R 0
~

exp -k Z u(B, ) &, g exp!- gy (R,„')!
&=1 l B o~i&j~E21

x 1'."exp! -k Q Q u(B„')!d(R'}d(R},

~here F, and I'," are the short-range contributions [Eq. (5) j for the large po!ymer and the kth sma! I

polymer, respectively, and

We now introduce the approximation that the large polymer interacts with any small polymer through
a single segment-segment contact. This is justified in view of the size of the small polymers. More
precisely this is expressed in terms of the Ursell-Mayer cluster expansion as

(10)

where fi, ~ is as usual defined by

j
exp — u(B~, ") =-1+f~, ~ .

B~

By substitution of Eq. (10) into Eq. (8) and carrying out the combinatorial problem, one arrives at the
following simplified form of the total partition function:

n! NQ, ! B n! N, N, I B '
1!(n—1) I (N —1) I V 2 l(n —2) I (N —2) I V

nl N, N t B"
(n —N,)!N, I (N, —N,)! V

(12)

Each term in the brackets in Eq. (12) corresponds to a fixed number of small polymers interacting via,
single contacts with the large polymer. Thus the first term is the contribution of no contacts, the sec-
ond is that of all possible one-contact situations shown in diagram I of Fig. 1, the third term is the
contribution of all possible diagrams of the type II of Fig. 1, and the final term in the brackets is the
contribution of a diagram where all N, segments of the large polymer are interacting each with a small
polymer via single contact. In Eq. (12), Z, is the single-polymer partition function for the large poly-
mer according to Eq. (4) and Z, is the single-polymer partition function for one small polymer. B in
Eq. (12) is given by

1 1
exp — Q u(B, , t') r, ~f„a~d'Bpa~d(B ~}.

V Z, 0~ i &j —E2 -I Aj WAg
(13)

This equation relates to a diagram where the Ath
element of the large polymer is coupled to the /th
element of the small polymer y. One has intro-
duced the coordinate transformation RB~-RAB~
in order to decouple the integrals. Since n +oX1,
one may make the approximation

C =nN, /V,

one arrives at the simplified total partition func-
tion

n! nl-n, —=n'.
(n —2) ! '

(n —3) I
(14)

z ...= z,z,"(1+CB)"i.

If all terms involving factorials of n are so ap-
proximated, by introducing the concentration of

We now derive the equation of state for the
large polymer. One notes that the chains in the
system may be expanded or contracted by varying
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the parameter of Eq. (6). Insofar as the large
and small polymers differ in their chemical na-
ture, the expansion coefficient 0 will be different
for these two types of polymers. We denote the
expansion coefficient for the large polymer by o„
and that for small polymers by a,. We introduce
the new variables into the definitions of Z „,
[Eq (S)] with

We intend to calculate the derivative of the free
energy with respect to expansion of the large
polymer; the free energy F is given by

F= —kg T lnZ„, . (20)

Computation of the derivative BE/Bo, follows
from Eqs. (S), (ll) —(13), and (20) in a straight-
forward manner. The result is

d'p, ."= v, ' d'p, .", i = 1, . . . , N„
0=1, . . . , n.

(17)

(is)

8 lnZ, C II

Here one has used the equation

(2i)

The dependence of Z „,on 0, and 0, is given as
follows:

fas 1 u(R&s") RAcosB(I+f y) (22)
o', k &T Mi'As~

Z ...= cr '"~ o '" "2Z,Z "(1+CB)"~

Ny

11 = P Pf' &(R,.)R,.Id'R, „,
BT

where 0 is the angle between vectors RA and

RAB . The constant 0 is given by

(23)

I= ~ ~ ~ —exp — Q Q u(Rz, ) I",
& (I+fAB ) cos0 d RAs

Z2 kBT, -~ ~=~ AAg

P"&(R,„)=— ~ ~ ~ exp — Q u(R;,) I', d(R) ~

1 1
Z g BT 0 (i &)(Ny — ) &0& ct'

(24)

(26)

8 Ing, /Bo, = Cif/(I —C/C, ) . (27)

To interpret this equation one may use a known

form of 8 Inz, / Bv, given by many authors"' ":
B lnz|/Bo~ —o~+ o~ + o| + (2s)

Equations (27) and (2S) indicate that as C -Cr,
Qy 0 Thus for repulsive forces, the large
polymer will collapse as experiments indicate.
The value of 0 after collapse will be determined
by the excluded-volume forces within the large

We are now in a position to discuss the singu-
larities of the partition function and free energy.
One notes from definition of B in Eq. (13) that
this constant has a negative value when the poten-
tial of interaction between large and small poly-
mers is repulsive. The partition function Eq. (16)
will be zero for negative B, at a certain concen-
tration cr given by ! B!= I/ c.rThe cr thus de-
fines a transition concentration when B is nega-
tive. We may now rewrite Eq. (16) as follows:

g„,=g,g "(1—C/Crj"x, C&cr, B&0. (26)

Accordingly the free energy and its derivatives
are singular when C =C~. In particular we con-
sider Eq. (21). If one sets BF/Bo, equal to zero,
the resulting equation will define the stable form
of the large polymer as a function of C. Using

!B!= C onre gets

! polymer.
A number of known experimental facts have not

yet been analyzed in this Letter; among them are
the molecular-weight dependence of the transition
concentration c ~ and an estimate of the value of
c ~ which can be arrived at by using a model po-
tential.
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