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predicts" an angular correlation with a minimum
at 90' at all the measured electron scattering
angles, in strong disagreement with the measure-
ments. Again for clarity the angular correla-
tions have not been included in Fig. 2.

Comparison of the 100-eV data with the various
approximation therefore shows that although
these approximations may describe the differen-
tial 2s+2p cross sections quite accurately, they
do not give an adequate description of the coinci-
dence measurements. The only approximation
to improve noticeably on the BA description of
the data is the DWPO model. The CPB, CPTM,
and UGA models give much poorer results. The
70-eV data are in rather better agreement with
the simple BA.

M. Eminyan, K. B.MacAdam, J. Slevin, and H. Klein-
poppen, J. Phys. B 7, 1519 (1974).

A. Ugbabe, P. J.O. Teubner, E. Weigold, and H. Ar-
riola, J. Phys. B 10, 71 (1977).

S. T. Hood, A. J. Dixon, and K. Weigold, to be pub-
lished.

E. Weigold, S. T. Hood, I. Fuss, and A. J. Dixon, J.
Phys. B 10, L628 (1977).

I. E. McCarthy and E. Weigold, Phys. Rep. 27C, 275
(1976).

I. Fuss, I. E. McCarthy, C. J. Noble, and E. Weigold,
Phys. Rev. A 17, 604 (1978).

'J. Macek and D. H. Jaecks, Phys. Rev. A 4, 2288
(1971).

U. Fano and J. Macek, Rev. Mod. Phys. 45, 558
(1978).

J. F. Williams, in Proceedings of the Ninth interna-
tional Conference on the Physics of Electronic and
Atomic CoLLisions, SeattLe, washington, 1975, edited
by J. S. Risley and R. Geballe (Univ. of Washington
Press, Seattle, 1976), pp. 188-150.

R. V. Calhoun, D. H. Madison, and W. N. Shelton,
J. Phys. B 10, 3523 (1977).

M. J. Roberts, J. Phys. B 11, 2219 (1977).
M. R. C. McDowell, L. A. Morgan, and V. P. Myer-

scough, J. Phys. B 8, 1058 (1975).
' L. A. Morgan and M. R. C. McDowell, J. Phys. B 8,

1078 (1975).
4J. N. Gau and J. Macek, Phys. Rev. A 12, 1760

(1975).
~L. A. Morgan and A. D. Stauffer, J. Phys. B 8, 2842

(1975).
' J. F. Williams and B. A. Williams and B. A. Willis,

J. Phys. B 8, 1641 (1975),

Lie-Operator Approach to Mode Coupling in Nonuniform Plasma

Shayne Johnston
PLasma Physics Laboratory, CoLNmbia University, Net York, Mezz York 10027

Allan N. Kaufman
Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 31 March 1978)

Hamiltonian perturbation theory based on recent Lie transform techniques is applied to
the Hamiltonian of a single particle in nonuniform Vlasov plasma. A simple relation is
derived between the field-plasma interaction energy and the transformed single-particle
Hamiltonian. This relation implies as special cases a general formula for ponderomo-
tive force in terms of the linear Vlasov susceptibility, and a symmetric Poisson-bracket
formula for the general three-mode coupling coefficient.

Nonlinear interaction among waves and parti-
cles in plasma occurs in problems of parametric
instability' and weak plasma turbulence'; these
nonlinear processes have important applications
to such areas as radio-frequency plasma heating,
laser-plasma coupling, and the stabilization of
linear instabilities. Several alternative theoreti-
cal approaches to these problems have evolved,
including a direct perturbation expansion of the
governing classical equations (e.g. , the Vlasov-

Maxwell system'), the temporary introduction of
quantum mechanical ideas, ' and the averaged-
Lagrangian method. ' Recently, the present au-
thors have suggested a new approach' ' based
upon a canonical transformation' of the single-
particle Hamiltonian. This viewpoint, named
the method of generalized ponderomotive forces,
has been shown to provide a systematic and intu-
itive framework for the study of mode coupling in
magnetized Vlasov plasma'; among its advantages
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are the elegance and efficiency of Hamiltonian
perturbation theory, and an appealing decomposi-
tion of the physical current density. In this arti-
cle, we re-examine our Hamiltonian approach in
the light of recent Lie-operator formulations,
and demonstrate the remarkable ease with which
certain simple and general results can be derived.

The coupling of linear modes in plasma is es-
sentially a perturbative notion, and, if one is
committed to doing a perturbation theory, then it
is reasonable to seek the most compact and sys-
tematic version of it available. Workers in celes-
tial mechanics have become experts on this sub-
ject in computing the orbits of heavenly bodies.
In particular, Hamiltonian perturbation theory"
has been significantly refined in the last decade
through the introduction of Lie transform tech-
niques. " The Lie transform approach is usually
applied to Hamiltonian systems depending on a
parameter &; the solution when & =0 is assumed
known. A canonical transformation which solves
the modified (e & 0) system is then constructed as
a power series in &. Although little is known
about the general convergence properties of such
series, they have proved very useful in applica-
tions. An important feature of the Lie transform
approach is an avoidance of the usual mixing" of
old and new variables.

Recently, Dewar" has developed another oper-
ator formalism for canonical transformations de-
pending on a parameter &, and shown it to be
equivalent to that of Deprit. " An important vir-
tue of Dewar's formulation is the derivation of a
nonpextuxbative form of the Hamilton-Jacobi
equation for the Lie generating function ~, viz. ,

~, W+(W, K}=GPH/~~ —~K/~~, (1)

where the braces denote the Poisson-bracket op-
eration. Equation (1) describes a canonical trans-
formation (q, p, H)-(Q, P, K) of a given Hamiltoni-
an system H(q, p, t;&). The old and new coordi-
nates are related by the canonical transformation
operator Gw a.ccording to q=GwQ and p =GwP,
where the operator G& is defined by the conditions
SC,w/Se =LwGw, Gw(a=0) =1, and hence

Gw 1 + f d+yiw(+y)

+f «if, d'2t-w(&i)t-w(E, )+ ~ ~,
where 1«denotes the Lie-derivative operator

, ~}. Equation (1) is, in principle, a, nonper-
turbative relation; in practice, it can be employed
to arbitrary order in & by power-series expan-
sion.

Let us apply this formalism to the Hamiltonian
of a single particle in hot collisionless plasma.
Striving for generality, we permit the plasma to
be nonuniform, bounded, and relativistic, and
the fields in the plasma to be nonuniform and
electromagnetic. Accordingly, for arbitrary
gauge, we write the electromagnetic potentials
in the form

A„,(x, t) = A, (x) + &A(x, ~),

I t o|.(x ~) = p 0(x) + ~p (» t)

considering (A, y) as a perturbation of the static
equilibrium potentials (X„y,). From the interac-
tion Lagrangian for a single particle, we then ob-
tain" the relation

&H/&~ = ey —(eA/c)(&H/&p), (2)

which is valid even for a relativistic particle.
Now, the charge and current densities in the plas-
ma can be written in terms of the one-particle
distribution function f (r, p, &) as

p (x, t) =e 1 dI' &(x —r)f (r, p, t),

J (x, t) = efdI' & (x —r)f (r, p, t)&H(r, p, t)/s p,

where dI' =d'x d'P. Thus, evaluating the field-
plasma interaction energy and noting relation (2),
we find

f d'x(py —c 'J A) = J dI'f&H/&e.

Suppose we now perform an arbitrary canonical
transformation. The Vlasov equation for new en-
tities will be

stF =(K, E}, (4)

where E=C'wf. Since Gw is a unitary operator,
manipulation of the right-hand side of (3) yields

&H &H ~HdI' (Gw 'F) —= dl' EGw —,
BE BE BE

leaving us in a position to exploit the Hamilton-
Jacobi equation (1). Indeed, upon replacing
GwSH/S& by (1), and using Partial integration and
(4) to rewrite the Poisson-bracket term, we ob-
tain the simple and general relation

Note that Eq. (5) is nonperturbative in & and that
the particular canonical transformation has not
yet been specified.

We shall discuss two applications of relation
(5). The first concerns a general formula" for

~E
d'x(py —c 'J A) = dI' E +& (F~) . (5)—Bc
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the ponderomotive (quasistatic) force exerted on
the oscillation center of a particle in a high-fre-
quency field. Adopting the radiation gauge q =0,
let us devise a canonical transformation to elimi-
nate all linear terms in the perturbed Hamiltonian:

this transformation can be effected provided that

any field-particle resonances are neglected. "
The static component of (5) then yields, correct
to order &2,

—c f d x(+J'~ ~ A) = 2f dI'f (&&'~)

i.e., a relation between the linear current density
J~'~ and the ponderomotive Hamiltonian (K~'~) of
an oscillation center. Introduction of the linear
susceptibility tensor' X and functional differentia-
tion with respect to f lead at once to the formula

(R '~(l')) = —(4~) 'fd'xf d'x'E *(x)E (x'):5X (x, x')/5f(I'),

which was presented (without derivation) by Cary
and Kaufman. "

Our second application of (5) concerns the reso-
nant nonlinear coupling of three modes of the form
A, (x) exp(-i&a, &) with w, +w2= u3. If J,~'~ denotes
the nonlinear current density at frequency ~, due
to the beating of modes b and c, and if h, denotes
the total energy in mode a, then the equations
governing action transfer among the modes and
the frequency shift of each mode are, "respec-
tively,

1 d8, 5 COq' = 2 ImU„' = 8, ' ReU„dt CO~

where we have defined the coupling coefficient

U, = —c 'f d'x J ' (x)'A, *(x).

Using the method of generalized ponderomotive
forces, we have previously evaluated the coef-
ficients U, and shown explicitly that U, =U, =U3*,
obtaining a symmetric Poisson-bracket formula
for the coupling coefficient U""; this symmetry
implies the Manley-Rowe relations"

, dh, , dS, , dh,

! over all nonresonant particles; the symmetry is
a necessary consequence of the trilinearity. This
interpretation is, of course, consistent with that
in terms of the trilinear interaction I-ag~argian
which one requires from the viewpoint of the aver-
aged-Lagrangian method. ' The great advantage
of our Hamiltonian formulation is that Dewar's
operator formalism provides us immediately
with a formula for K '), viz. ,

lf(3) ~(3) ( If(2) gT(1)) ~ 3 1{(If(1) gT(1)) gt(1) j.

where the generating function W ' is found by
solving

s,W»+(N'&, IIj=a~'~.

The integral of K ' over phase space reproduces
the Poisson-bracket formula for the coupling co-
efficient, ""previously derived by the method of
generalized ponderomotive for ces.

This work was supported by the U. S. Depart-
ment of Energy under contracts No. W-7405-ENG-
48 and No EY-76-8-02-2456.

Relation (5), however, gives deeper insight in-
to the foundations of the symmetry of U, and also
simplifies its derivation greatly. If we devise a
canonical transformation to satisfy (again neglec-
ting field-particle resonances")

z =a +(sc"') +z'"+o(~'),

then the static component of (5) yields the formula

—c 'f d'x(J~' 'A) =3fdI f,&SC'"&,

where K ' represents the single-particle triline-
ar interaction energy. We thus are led to an in-
terpretation of the three-wave coupling coefficient
as the trilinear interaction energy of a single par-
ticle in the fields of the three modes, summed
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Because of the similarity of their order parameters, there are close analogies between
defects of He-A and cholesteric liquid crystals. In particular, boojums, originally pre-
dicted for He-A, should exist as well in cholesterics. Certain textures experimentally
observed and reported in the literature are identified as boojums. A topological analysis
is given, and the effects of boojums on dynamical properties of cholesterics are dis-
cussed.

It is known that the topological characteristics
of the boundary of a system with spontaneously
broken symmetry are connected to the appear-
ance of singularities in the order parameter. It
follows that in order to fully treat the problem
of textures in the bulk, one must consider global
boundary conditions as well as the topology of
the order parameter. This approach has been
of great interest recently in determing the prop-
erties of 'He-A in containers of various topolog-
ies. ' ' One of the most interesting conclusions
drawn from these studies is the necessity of new

types of surface singularities in the order pa-
rameter of 'He-A in certain containers. For
example, if 'He-A is placed in a sphere subject
to the boundary condition that the two gap-param-
eter vectors h, and i4, are constrained to lie in
the surface, a singularity in the pair angular
momentum vector T must appear, and it is be-
lieved that the lowest-energy configuration con-
sists of an isolated singularity lying on the sur-
face of the sphere. This type of singularity is
known as a boojum' (see Fig. 1), and connects

to a nonsingular vortex texture in the bulk. The
appearance of a boojum in a sample of 'He-A can
lead to decay of superf low without the nucleation
of highly singular vortex-line cores. ' It there-

FIG. 1. A simple spherical boojum. Lines represent
1 in I-Ie-A, t in cholesterics.
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