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Intensity Inversion in the Balmer Spectrum of C +

H. H. Dixon, J. F. Seely, and B. C. Elton
¹eaEResearch Laboratory, 'N~ashington, D. C. &03'T5

(Received 22 November 1977)

Intensity inversion between the first (3—2) and second (4 —2) Balmer series spectral
lines of C~ ions has been observed during plasma expansion into a buffer gas. Numeri-
cal modeling indicates that the Balmer spectrum is consistent with the Leman spectrum
and with charge-transfer pumping of the n = 4 level. Electron-ion recombination alone
is insufficient to explain the observed intensity distribution.

In a recent Letter, ' it has been suggested that
a sudden increase in the Balmer-e line of hydro-
genic 0" emitted from a tokamak plasma was the
result of the charge transfer reaction H'+ 0"
-H'+ (0")*+&E,where the asterisk refers to
the excited hydrogenic ion formed. However, the
observed absence of corresponding increases in
the Lyman-o. a.nd -P lines has made a full inter-
pretation of this experiment difficult. The poten-
tial importance of these results to the understand-
ing of charge transfer effects in plasmas has
prompted us to measure the complete Balmer
spectrum of C" in a plasma expanding into a buf-
fer gas. Intensity inversion between the Balmer-
n and -P lines is observed, and inverted popula-
tion densities are deduced for the n = 3-6 levels.
Numerical modeling indicates that the n = 4 level
is pumped by the charge transfer reaction

C'+ C"-C' + (C")*+&E;

electron-ion recombination alone is insufficient
to explain the intensity inversion. The Balmer
spectrum is consistent with the previously re-
ported' Lyman spectrum. We believe this to be
the first consolidated report of complete Balmer
and Lyman spectra that indicates charge-trans-
fer pumping of excited states of hydrogenic plas-
ma lons.

In this experiment, a Nd-glass laser (5 S, 15
nsec) vaporizes a graphite target, and a plasma
containing stripped carbon ions expands into a
buffer gas (helium at 1-Torr fill pressure). The
highly stripped ions of interest stream outward
in a - 20' cone normal to the target surface, slow-
ing to a velocity of 5&&10' cm/sec at a distance
from the target of 15 rnm where they are be-
lieved to interact with a neutral carbon cloud.
The carbon ion and atom densities at this point
are in the range of 10"-10' cm '. In this ion-
atom interaction zone, an electron temperature
of kT = 1.4+ 0.4 eV has been deduced' from the

measured ratio of the 2'I'-1'8 resonance and the
2 P- 1'8 intercombination lines of heliumlike
C4', assuming an equal probability for free-elec-
tron capture into the singlet and triplet systems.
For the conditions present here, the major trip-
let population losses are by radiative decay' and
by electron spin-exchange collisional transitions
to singlet levels. For the latter, a rate' of 1.4
& 10 'N, /kT, sec ' was used (kT' in eV) with an
electron density X,=5&&10" cm ' as measured'
from Stark-broadened He II lines. This tempera-
ture agrees with an extrapolated value from a
similar experiment' without a buffer gas, which
implies that significant gas cooling of the plasma
is not present at a distance of 15 mm.

For the Balmer series measurements, we used
a 2.2-m grazing-incidence spectrograph equipped
with a gold-coated, 600-groove/mm, 1.5' blaze-
angle grating set for an 84.5' angle of incidence. '
Forty discharges were required to obtain a use-
ful spectrogram on Kodak SWH emulsion. The
results were found to be reproducible, and a typi-
cal microdensitometer tracing is shown in Fig.
1. It is immediately noticed that the Balmer-P
(4-2) and Balmer-y (5-2) lines are intense com-
pared to the Balmer-n (3-2) line, which is con-
sistent with the earlier Lyman series results. '
Furthermore, the Balmer-P line intensity ex-
ceeds that of the Balmer-n line. A numerical
model indicates that the relative line intensity
distributions of both the Balmer and Lyman spec-
tra are consistent with charge-transfer pumping
of the n = 4 level. In this model, the evolution of
the populations of the n, l sublevels of the hydro-
genic ion are calculated for n up to 10. It is es-
sential to calculate the populations of the 1 states
individually, rather than assuming statistical oc-
cupation, since radiative decay of the 2P state
prevents complete electron collisional mixing'
with the 2s state when N, Z '(kT, ) "'&6X10"
cm"' eV +', where Z is the nuclear charge.
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FIG. 1. Microdensitometer tracing of the first-order
time-integrated C vI Ba1mer spectrum (C+ ions) at a
distance of 15 mm from the graphite target. The prom-
inent features identified by p, ~, and O are C v lines
(Ref. 4). The horizontal bars indicate relative intensi-
ties derived from Lyman series data (Ref. 2) on popu-
lation densities, assuming a statistical mixing of sub-
levels.

Processes included in the model are radiative"
and three-body collisional" recombination, elec-
tron collisional ionization" and excitation, '
charge transfer (see below), radiative decay, "
and collisional mixing' of the l sublevels for the
higher principal quantum numbers n.

The calculated steady state and the experimen-
tal Balmer and Lyman spectra are compared in
Fig. 2. A best fit to the complete experimental
spectra is shown in Fig. 2(a). This calculated
result was obtained for the typical collisional
scaling parameter N, (kT,) v' = (7+ 1) && 10" cm '
eV"' '. The specific numbers chosen for the den-
sity and temperature, namely 1V, = 7&&1O" cm
and k&, = 1 eV, are within the uncertainties of the
experimentally determined values. Also incor-
porated was a charge-transfer pumping rate
N, (ov) =5&&10' sec ' for capture into the n=4
level of C'+, where N, refers to the carbon atom
density, 0 to the charge transfer cross section,
and v to the relative ion-atom velocity. For N,
=10'~ cm ' and v=5&&10' cm/sec, this corre
sponds to 0 = 10 "cm . While partial cross sec-
tions have not been calculated for the reaction of

I

0= 8642 7 53
n ~l n~2

FIG. 2. Calculated (bars) and experimental {dots)
relative line intensities for the Lyman {Ly) and Balmer
(8) spectra of C+. All calculated intensities are rela-
tive to the Lyman-P line; the experimental spectra are
normalized to the calculated n = 3 (upper level) line
intensities. The intensities were calculated assuming
an electron density of 7&& 10'6 cm 3, and electron tem-
peratures (kv;) and charge transfer rates of (a) 1.0 eV,
5&& 10 sec ', (b) 1.0 eV, 0 sec ', and (c) 0.1 eV, 0
sec ', respectively [kT, = 0.1 eV in {c)does not seem
realistic, experimentally] .

Eq. (1), such a value is consistent with Landau-
Zener total-cross-section calculations'4 for the
(H, C ) reaction. We consider the agreement in-
dicated in Fig. 2(a) to be a good fit, with colli-
sional recombination populating high-n states,
charge transfer filling intermediate ion states,
and cascading and radiative recombination popu-
lating the lower-n states.

In Fig. 2(b), only the charge-transfer process
has been removed from the model, and the calcu-
lated n = 4 intensities are seen to fall considera-
bly below the experimental values. Variations of
electron temperature and density does not result
in improved agreement with the experimental in-
tensities. Inversion of the n = 3-2 and 4-2 line
intensities occurs in the absence of charge trans-
fer only ifN, (kT,) ' ~2&10" cm eP ' Thjs
condition is shown in Fig. 2(c), where the tem-
perature was reduced to a O. l-eV extreme. No-
tice that under these conditions the n = 4-2 and
5-2 line intensities are inverted, a phenomenon
which has never been observed experimentally.
At this low temperature the collision limit drops
to the n = 4 level, and lower spectral lines are in-
verted as a result of cascading.

The calculated relative reduced populations
(population densities divided by statistical weights)
of the n, I states of C" which generate the spec-
tra of Fig. 2(a) are shown in Fig. 3. Since elec-
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FIG. 3. Relative reduced population densities of the

n, l states of C~ calculated as in Fig. 2(a) for an elec-
tron temperature kT, = 1.0 eV, an electron density
+, = 7 && 10' cm, and an n = 4 charge transfer rate
of 5& 10 sec '. The $ values progress vertically, as
indicated for n = 7. Population densities are normal-
ized to the total for the n = 3 level, The n = 1 popula-
tion density shown is reduced by a factor of 10.

tron collisional mixing' of ~ sublevels occurs for
n & 3, reduced populations of such sublevels of a
given n level are equal; the population of the 2p
resonance state is small because of rapid radia-
tive depletion. The populations of levels n = 3
through 6 are inverted. Because of the falloff in
radiative decay rate with larger n, only the n = 4
to 3 population inversion is sufficient to produce
an intensity inversion, as observed experimental-
ly.

Of possible concern are opacity effects on the
Balmer lines. The optical depth & of the Balmer-
n line may be estimated for Doppler broadening
from'2

~ = 1.1~10-'WX,dJ (P/I T,) J',

where' =182 A is the wavelength, ' f =0.46 is
the absorption oscillator strength" averaged ac-
cording to relative n =2 populations from Fig.
3(c), p, = 12 is the atomic mass number, kT; ~ 1
eV is the carbon-ion effective temperature, and
0= 0.6 cm is the depth measured from transverse
space-resolved spectra. ' From Fig. 3, the pop-
ulation density N, of the n = 2 absorbing level is
approximately an order of magnitude smaller

than that of the ground state of the hydrogenic
ion and is therefore - 10" cm 3. This results in
an optical depth &= 0.02, indicating an optically
thin plasma.

In summary, the newly measured Balmer spec-
trum is consistent with a numerical model that
also agrees with the previously measured Lyman
spectrum. Intensity inversions for lines orginat-
ing on levels 4 and 3 are observed and population
inversion for levels 3 through 6 is deduced. The
wide range of population inversion results from
collisional population and cascading for the higher-
n levels, while the intensity inversion and large
n = 4 to e = 3 population inversion requires the
selective pumping into ~ = 4 provided by reso-
nance charge transfer.
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