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We present a new unified method of coupling matter to both Poincare and conformal
supergravity. As an example we construct the coupled Maxwell-Weyl and the coupled
Maxwell-Einstein supergravity theories. We also discuss the close connection with a
recent auxiliary-field formulation of supergravity.

There are essentially bvo classes of supergrav-
ity theories, Einstein supergravity which is
based on the graded Poincare groups, and Acyl
supergravity which is based on the graded con-
formal groups. The former can accomodate
O(N) internal symmetries and the latter U(N).
The U(1) theory has recently been constructed' '
and its full superconformal invariance estab-
lished. ' Both Einstein and Weyl supergravity
have merits and demerits, but this is not what
we wish to discuss here. Rather, we wish to
show that some of the results of Weyl supergrav-
ity can be used to give a unified treatment of mat-
ter coupling to both supergravity theories. In
particular we first construct a new locally super-
conformal and Maxwell gauge invariant theory by
coupling the (1,—,') supermultiplet to Weyl super-
gravity. We then show that this result leads di-
rectly to the corresponding result for Einstein
supergravity which is the locally supersymmetric
Maxwell- Einstein system previously constructed. '
The method is simple and we expect it to gener-
alize to other massless supermultiplets.

The coupling of matter to Weyl supergravity is
straightforward and has already been given for

the scalar supermultiplet. ' Every massless
supermultiplet has three conserved currents,
the energy-momentum tensor, 8„„,the spinor
current, j„,and the chiral current, j„".' These
are coupled directly to the three gauge fields,
e.„, („, and A„of Weyl supergravity. Additional
terms must then be added to the action and mat-
ter field transformation laws to ensure complete
superconformal invariance. This invariance re-
quires, in addition to the usual Q supersymmetry,
three new symmetries, Weyl invariance (D),
chiral invariance (A), and 8 supersymmetry. The
action is determined by the D, A, and S symme-
tries and low-order Q-supersymmetry variations.
The construction is particularly simple because
of the tight constraints imposed by the extra sym-
metries which are at the same time fairly easy
to establish.

The essential point is now that since the gauge
algebra of the transformations of e,„, g„, A „
closes off shell, ' these transformation laws will
not be changed by the presence of matter cou-
plings, a point which is explicitly verified. Be-
cause of this, the Weyl-supergravity action itself
is seParately invariant. We may therefore omit
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it from the coupled Maxwell-Weyl action without
spoiling the superconformal invariance. By the
same reasoning we may also add the action for
the recently constructed' superconformal exten-
sion of Einstein supergravity. This action has
the property that it is gauge equivalent to Ein-
stein supergravity and, in fact, reduces exactly
to the Einstein-supergravity action on appropri-
ately fixing the extra D, A, and 8 gauges. The
procedure for obtaining Maxwell-Einstein from
Maxwell-Weyl supergravity will now be clear.
Simply replace the Weyl-supergravity action by
the superconformal extension of the Einstein-
supergravity action. Fix the D, A, S gauges.

Eliminate the auxiliary fields. The last step fol-
lows because without the Weyl-supergravity ac-
tion the chiral gauge field, A„, is auxiliary and

may be eliminated through its field equation. We
carry out these steps and show that the previous-
ly constructed Maxwell-Einstein supergravity
theory *' is obtained.

This method has some interesting features in
common with the recent auxiliary-field formula-
tion of supergravity'' for which the gauge algebra
closes without the use of field equations. We
comment on this connection in the conclusions.

Our conventions throughout are those of Refs.
3 and 6.

Maxwell Wey-l supergravity. The L—agrangian is

gM-w gw & +pp+v ap g & ey~pD

+ Bi

eely"y

XAp —2eXy"v F(~ —afya' 'y ~4' 4p —~~~e" &ysy ~(gyp(a p

where I„,=B„B,—B„B„and D„ is the local Lorentz-covariant derivative uithout torsion and is given
explicitly in Ref. 6. B„ is the spin-1 field and X the Majorana spin- —, field of the (1,2) supermultiplet.
The transformation rules for the D, A, S, and Q symmetries are given in Table I. 2 is the Weyl-
supergravity Lagrangian given in Ref. 3.

The construction is simple. After adding the A, and (~ Noether couplings and covariantizing with

e,„, the X'g„' terms are determined by S supersymmetry up to additions of eD.($„("-4g yy () and

eXy, A(g„y, g +~ g yy, y () which are separately S invariant. This ambiguity is removed by requiring
that all A „-dependent terms in 6qZ cancel. The Lagrangian is then determined and it remains to
check complete Q supersymmetry. In Table II we give a. list of all the possible Q-supersymmetry
variations and their sources. Some of these variations are identical to those of Maxwell-Einstein
supergravity and are thus known to cancel. The remaining variations require the usual algebraic ma-
nipulations and Fierz rearrangements to show that they cancel also.

Maxwel/ Einstein supe-rgravity. —The superconformal extension of Einstein supergravity' has three
fields A, B, X of a scalar supermultiplet in addition to the gauge fields e,„,A„,g„. These are "com-
pensating" fields of superconformal invariance [just as y is a "compensating" field of Weyl invariance
in the well-known Weyl invariant theory 2=-, (&„y)'-~»Rp']. When the "extra," D, A, S gauges are
fixed by choice of A, B, X the Lagrangian reduces to that of Einstein supergravity but withA„an aux-
iliary field. The explicit form of this superconformal extension is given in Ref. 6 and we denote it by
ZscE. The gauge transformations-of e,„,A„, g„, in 2' are also those of L' and hence given in
Table I.

TABLE I. The D, A, S, and Q invariances of LM ~'.

S A chiral
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D Weyl
invariance super symmetry'
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Now, as explained earlier, we may simply replace L' in (1) by L c urithout spoiling the super
confoxmal inva~ia~ce. This follows from the fact that the gauge algebra closes on the fields which
couple to matter, e.„,A„, g„. (The gauge algebra. of 2 does not close on X since one needs also
the auxiliary scalar F and pseudoscalar G of the scalar supermultiplet, but complete closure is not
necessary for our purposes. ) We now fix the D, A, 8 gauges by choosing A =/6 x ', B =X =0 as in
Ref. 6. Thus, for present purposes, we need only know the form of ' after this gauge choice, and
this is given by the first two terms in (2.1) be]ow. This procedure provides the following Lagrangian

&eg—"Pg"'F»F ~„2e&-y"D~X —,eely—"o F4„,'e-p-~v "y A. Xy„(„-~»Xy,y, kp„y~(,&""~'. (2.1)

Eliminating A& gives rise to (XA) terms. Then if we take p- —p, (2.1) is identical to the Lagrangian
of Ref. 4 upon Fierz rearrangement.

Fixing A, B, y as above to arrive at (2.1) is not a consistent truncation of either Q or S supersym-
metry. But it is a consistent truncation of a linear combination. In fact,

~~~a) =~a(~a)+~s 's=-4Aypg — a,),gW6
(2.2)

TABLE II. Variations and their sources in 5+2+ ~'.

Type of variation Source

egA, Ap

F

(i) Qe p
Q"It $~ in E

(ii) QA, -o. ~ F& in gA.E
(i) 6e,„-~y,g„ in M.

(ii) GB&-ey&A, in XgE
{iii) e&„-~y in ~m„
(iv) aq„-O„& inqqXX
(v) 6A. -JA, & in XX

(i) Q -o ~ E& in A.A,A&
{ii) 6f& -A&c in ~5'
(i) a~-~ S~ in~a

(io hap- ey~A, in F
(iii) APE- B~q in wgF

(i) 6e,„-ry, y„ in XZA„
{ii) 6A, „-eP in G.A„

{iii) 5Q&-A&q in/ X

(iv) 6A. -PAe in A.A,A&
{i) ~e~p &&~$p in Q+

(ii) 6g gpss in A,gF'
{iii) BA. -JA, e in QE
(iv) 6A. -o F& in g ~

(i) 6A&-g g in A.A,A„
(ii) 6g-P q in /~A.

(iii) 6a-&ac in P'a'

ap ep ~p in~ A,

is a consistent truncation of L' and matter
field transformation laws. g in (2.2) is propor-
tional to the cosmological constant. In the case
g = 0, this particular combination of Q and 8
supersymmetry is already known to reproduce
the correct transformation laws of Maxwell-Ein-
stein supergravity. ' Our approach provides an
explanation of this fact.

We have given a simple method of coupling mat-

ter to both Weyl and Einstein supergravity in a
unified way. This is made possible by the closure
of the gauge algebra inWeyl supergravity' and
the existence of a superconformal extension of
Einstein supergravity. ' We illustrated our meth-
od with the Maxwell (1, 2) supermultiplet but we
believe that it is generally applicable. A key fea-
ture is the ability to add and subtract invariant
actions to obtain another invariant action. This
was not possible in the original formulation of
supergravity. Presumably it will be possible in
the new formulation in which three auxiliary
fields, A&, &, and S are introduced to close
the algebra off shell. ~' There are some interest-
ing similarities between this work and ours. In
particular we can give a simple understanding of
why these three fields are needed to close the
algebra. In the superconformal extension of Ein-
stein supergravity with the scalar supermultiplet
(A,B,y,F,G, ) the gauge transformations are ex-
pected to close off shell on al/ fields. ' Since A,
~, and X are fixed by a D, A, S gauge choice,
this leaves the auxiliary fields A„,E, G. Clear-
ly the auxiliary fields' and S of Ref. 9 are to be
identified with the I" and G fields, respectively.
Preliminary calculations confirm this conjecture.
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Sum rules on lepton-pair production cross sections are derived on the bases of the
Drell- Yan formula and the known sum rules in leptoproduction. I also obtain exact rela-
tionships between the square of the average transverse momenta of the valence quarks
and moments of the dilepton cross sections.

Unlike the case of leptoproduction, no sum rules have thus far been derived for lepton-pair produc-
tion in hadron collisions. Theoretical understanding of the lepton-pair production processes is not on
a firm ground because the usual short-distance and light-cone ideas are not applicable. The Drell-
Yan mechanism' of quark-antiquark annihilation has been found to be quite successful, ' even though the
reason for the dominance of the annihilation term is not totally clear. Recently, progress has been
made' in studying the correction to the naive parton result in the context of QCD (quantum chromody-
namics) and relating it to the scaling violation of the parton distribution functions. In particular, Sach-
rajda has found that when the gluon contributions are included in low-order perturbation-theory calcu-
lations in QCD, the Drell- Yan formula remains valid. As the Drell- Yan picture gains credibility phe-
nomenologically and theoretically, it becomes interesting to investigate the general implications of
that picture independent of the details of the input. I derive here sum rules based on that picture which
can be tested experimentally. Moreover, I give explicit expressions for the transverse momenta of
the valence quarks in hadrons.

In the Drell- Yan picture the cross section for dimuon production in high-energy collisions between
two hadrons, A ~ and EE2, is

do(h, k2)/dM' = (C/M')+tet' f [S»,tS»,f + S»,tS» t] 5((k, +k,)' M')(k, 'k,-') 'd'k, d'k„

where C =4no. '/9, M is the dimuon mass, the sum is over flavor, et is the charge of a quark of flavor
f in units of e, and k,. is the parton momentum in hadron k;. S», ' is the invariant parton distribution
function of quark f (antiquark f ) in the hadron k, and depends on the invariants formed out of the mo-
menta of the hadron P, parton k;, and photon q. ' The "structure" functions S satisfy the constraints
(for proton)

Nu Nu 2 N"-N'= I N'-N'=0
where

X„'=fS„'(P,k, q)d'kjk'

In addition to the quark-antiquark annihilation term (1), there are in principle many other terms in-
volving gluons. In the leading-logarithm-approximation, low-order calculations" they can be recast
in the form of (I) with a concomitant change of the S functions compatible with scaling violation of the
structure functions in deep inelastic scattering. Thus, with enhanced confidence in the dominance of
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