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Diamond-Metal Interfaces and the Theory of Schottky Barriers
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A self—consistent pseudopotential calculation of the diamond-metal interface is used to
examine interface states and empirical correlation for the dependence of the Schottky-
barrier height and interface index, S, on ionicity. The properties of diamond are crucial
because of its large gap and zero ionicity. Predictions based on experimental extrapola-
tions give S= 0. Our calculations give 8=0.4 and a barrier height of 2.2 eV; the latter is
in good agreement with experiment.

The behavior of the diamond-metal interface is
considered to be central to resolving important
questions in the theory of Schottky barriers. The
relevant properties of diamond which make this
material unique are its large gap but zero ionicity
parameter. ' Theories and empirical correla-
tions involving Schottky barriers have concentrat-
ed on the dependence of barrier properties on ion-
icity and band gap. Since for most materials
large ionicity implies large gaps, the correla-
tions with ionicity and band gap are hard to de-
termine separately.

We present here results of a self-consistent
nonlocal pseudopotential calculation for the metal-
diamond interface. We find that the behavior of
the diamond Schottky barrier can be quantitatively
understood using a model based on metal-semi-
conductor hybrid states (metal-induced gap
states'). These states are free-electron-like in
the metal region and decay rapidly into the dia-
mond part of the interface. These states deter-
mine the Fermi-level pinning and yield a barrier
height of 2.2 eV which is in statisfactory agree-
ment with the experimental value of 1.9 to 2.2
eV.'

For covalent (nonionic) Schottky barriers, like
Si or Ge, the barrier height, @&, is found to be
essentially independent of the metal contact used,
i.e. , Fermi-level pinning is independent of metal
electronegativity. In constrast for ionic materi-
als like SiO„ the barrier height depends on the
metal contact and increases almost linearly with
meatl electronegativity, X . The dependence of
barrier height on metal electronegativity is meas-
ured by the interface index S =—&4',/&y . Through-
out this Letter, S is in units of electron volts per
electronegativity units. Kurtin, McGill, and
Mead' have examined the dependence of 8 on semi-
conductor ionicity, &X, and the properties of this
curve (e.g. , the sharp rise around &g-0.7) (Fig.
1) have been the subject of many investigations.
S = 0 for Si and Ge and S ) 1 for SiO, as described

0.8—

0 4—
GaTe

CdTe ~
0.2 — G

GaAs
Ge S; g

C t InSbi
0 0.5

ZnS~

aS

CdS
'GaSe

'+ZnSe

1
~ CdSe

SiC
l

1.0

l ZO~ IAI
AIN ~ ~ ~ ~ ~—

SrTIO3

Sn02 KTa03-
Si02
Ga203

l

1.5
l

2.0 2.5
h, X

FIG. j.. The interface index, S, vs Pauling ionicity
(from Ref. 4). For SiC the value of S has been adjusted
to S = 0 (Ref. 8).

above. If &X is, in fact, the fundamental variable,
then a diamond Schottky barrier should exhibit an
S= 0.

The method we have employed here is similar
to the one used in the calculation of metal-Si and
metal-zincblende interfaces. "We consider a
unit cell consisting of twelve layers of diamond
with a (111) surface in intimate contact with a
jellium slab having charge density corresponding
to aluminum (r, =2.07). The thickness of the met-
al slab is equivalent to twenty layers of diamond.
For computational purpose, this slab geometry
is repeated along the direction perpendicular to
the interface so that we retain three-dimensional
periodicity. This supercell is big enough to pre-
vent significant interactions between neighboring
interfaces. The jellium edge is assumed to lie
one-half of the C-C bond length away from the
diamond surface. For diamond, we used a non-
local pseudopotential, obtained' by fitting to
atomic spectra, which yields a good band struc-
ture for bulk diamond with a small number of
plane waves (-40 plus another 50 through second-
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order perturbation) in the basis set. The elec-
tronic wave function is expanded in a basis set
consisting of 600 plane waves. Another - 800
plane waves are included through a second-or-
der perturbation scheme. This set of plane waves
gives roughly the same degree of convergence
as the bulk diamond or the diamond (111) surface
calculations. ' The final self-consistent charge
density is obtained from six points in the irreduc-
ible two-dimensional Brillouin zone.

We willfocus here only on gap states because it
is these states that govern interface behavior.
The charge density of the gap states is plotted in
the (11tl) plane perpendicular to the interface in
Fig. 2(a). The same charge-density profile, p(z),
averaged parallel to the interface and plotted per-
pendicular to it, is shown in Fig. 2(b). These
gap states are free-electron-like on the metal
side and decay exponentially into the diamond re-
gion. True interface states localized at the inter-
face do not exist for energies within the gap.
The calculated barrier height, @'„defined here
to be the difference bebveen the Fermi level and
the valence-band maximum of diamond (chosen
for comparison with experiments done on P-type
diamonds) is 2.2 eV. The experimental values
range from 1.9 to 2.2 eV.' Image-force lowering
is neglected in our calculation. The penetration
of the metal-induced gap states into the diamond
determines the behavior of 4'&. The extent of their
penetration can be measured by a penetration

length 6 defined by

p(6)&p(0) = e-',

where the distance is measured from the interface
to a point & inside the diamond. From Fig. 2(b),
& is 1.37 A. This value is roughly one-half of the
corresponding decay length in the metal-Si (-3.0
A)' or metal-Ge (-2.7 A) interface. '

Another relevant quantity determing 4'& is the
surface density of states, D, (E), defined by

D,(E) = A 'J~ Jo N(E, r)dade, 0&E&E~, (2)

where' is the interface area, E, is the gap, and
the integral over z is to be performed from the
interface to a point deep into the bulk on the dia-
mond side of the barrier. N(E, r) is a local den-
sity of states, defined by

Thus -eD, (E) gives the density of surface charge
per unit energy per unit area. The calculated
D,(E) shown in Fig. 3 is more or less uniform in
the gap compared with the sharp peak of the dan-
gling-bond surface states for the clean diamond
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FIG. 2. {a) Charge-density contours for gap states
with energies between 0 and 4 eV in a (110) plane. The
numbers should be multiplied by 0.82 to get the number
of electrons per unit cell of bulk diamond. (b) The
same charge density averaged parallel to the interface
and plotted along the direction perpendicular to the inter-
face.

FIG. B. Surface density of states, D, of the metal-
diamond (ill) interface in the gap. Also shown is the
density of states of the clean diamond (111) surface
states in the gap from ref. 6. It is clear from the fi-
gure that the clean-diamond-surface-state peak is dras-
tically reduced by the metal contact. The new metal-
induced gap states give the uniform D, shown above.
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surface. Our calculation yields D, (EF) =2.3&&10"
states/eV cm'. This is a dramatic change illus-
trating again that it is not simply the dangling-
bond states of the clean surface which determine
the Schotthy bar-ri er properties. '

The S parameter can now be calculated using
the following expression':

S =2.27[1+4me D,(EF)(0.5+5/e, )] ',
where &, is the dielectric constant for screening
potential fluctuations within a distance of order
6. We choose &,-2.""Although the present cal-
culation of 8 does not include effects arising from
the doping of diamond, it is known experimentally
that C'~ is practically independent of doping densi-
ty well above the typical doping density of n-10"
cm '. By substituting calculated values for 6 and
D,(EF) into the Eq. (4), we obtain S =0.38+ 0.1.
The relatively large error bound is a consequence
of the uncertainty in determining 6, D„and &,.
The only experimental value we are aware of sup-
ports a smaller value of S (S & 0.2); however, the
authors' point out that they do not consider this
measurement to be conclusive.

Our result can be interpreted in terms of the
energy gap, E~ and the lattice constant, a,. Com-
parison with metal-Si and the metal-zincblende
semiconductor interface calculations' indicates
that the charge transfer per unit area to the semi-
conductor caused by the exponential tail of the
metal-induced states in the thermal gap is pro-
portional to the number of surface atoms of the
semiconductor per unit area. In other words,
each surface atom of the semiconductor "induces"
(approximately) a fixed amount of charge trans-
fer from the metallic wave functions on the other
side. We estimate that 0.6-0.7 electronic states
are available"' on the semiconductor side in the
thermal gap per surface atom of Si, GaAs, ZnSe,
ZnS, Ge, and diamond. If this is the case, and
if we assume that the surface density of states,
D„ is more or less uniform in the therma1. gap,
then a large-gap material has a small D,. Neglect-
ing lattice-constant effects, the D, of diamond
compared to Si would be reduced by a factor of
the ratio of their gaps -~. However, since dia-
mond has a smaller lattice constant than Si, it
has a larger number of surface atoms per unit
area; hence, D, of diamond increases by a factor
of the ratio of the squares of the lattice constants
-2.3. The net result gives an estimate for D, of
approximately one-half of the Si value (- 4.5&& 10"
states/eV ~ cm'). This is consistent with our com-
puted value of 2.3&&10" states/eV cm'. Detailed

calculations showed that ~ is reduced roughly by
the same factor. Another estimate of & using the
one-dimensional WKB approximation [h/25 =

(mE,)' ', where E, is Phillips's gap'] gives results
consistent with our detailed calculations.

We can use the above arguments to examine
the case of cubic SiC. SiC is also an interesting
test case because S for SiC should be greater
than the corresponding value for Si or diamond
if ionicity plays a central role. Experimentally
the 8 parameter for SiC is uncertain; it is deter-
mined to be roughly as small as that of Si'. Using
a gap of 2.3 eV anda, =4.35 A,"we estimate D,
for SiC to be given by

D,(Sic) 1.1 5.43
D, (Si) 2.3 4.35 (5)

~ &Present address: IBM Watson Research Center,
P. Q. Box 218, Yorktown Heights, N. Y. 10598.

J. C. Phillips, Bonds and Bands in Semiconductoys

Assuming the same reduction in &, we get S =0.2
which is half the corresponding value for diamond.

In conclusion, we obtain C', =2.2 eV and S™0.4
for the diamond Schottky barrier. If the above
value for S' is confirmed by experiment, this
would support the conclusion that ionicity is not
the fundamental parameter for the behavior of 8
(Fig. 1).

Recent suggestions to replace ionicity by chemi-
cal reactivity" or atomic term values" appear to
predict S = 0 for diamond. We suggest E,a,' as a
scaling parameter for S. Although this parameter
does not give a sharp transition in the 8 curve
(see &y =0.7 in Fig. 1), Schluter" has reexamined
all available data and has also questioned the con-
ventional interpretation and the sharp transition.

Two effects are not included in our calculation:
chemical bonding between diamond and metal
atoms, and reconstruction of the diamond surface
at the interface. " Reconstruction greatly compli-
cates the calculation and more detail is needed
than is now available. Chemical bonding is not
believed to be critical since we are doing linear
Schottky-barrier theory and S is considered to be
dependent on semiconductor properties only (to
fir st order) .
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Open-orbit electrons are shown to generate an ultrasonic wave throughout a metal when
the conditions for an open-orbit resonance are satisfied.

We have observed anomalous propagation of 30-
MHz shear waves through copper and silver crys-
tals by open-orbit electrons. At certain values
of the applied magnetic field, acoustic energy
from a wave packet of 1.0-p sec duration spreads
out over about 4.0 p sec, reaching the receiver
transducer long before the main body of the wave
packet arrives. We fir st present the experimen-
tal data which suggested the effect, and then pro-
pose a. simplified theoretical model which agrees
with the principal features of the data.

Open-orbit electrons traveling parallel to the
propagation vector q of an ultrasonic wave absorb
energy resonantly' when the period of the open
orbit, D = RZ/eB, is some integral multiple n of
the sound wavelength &. Here I& is the crystal
momentum corresponding to the period of the
open orbit in k space, e is the electronic charge,
and & the applied magnetic field. Hence, the res-
onance condition is B„=hJf/net. .

While studying these effects with shear waves
in copper, we decided in mount the quartz trans-
ducers with their polarization vectors midway be-
tween the fast- and slow-mode directions so that
we could measure both modes in the experiment.
Figure 1(b) shows the attenuation for the fast
mode. Open-orbit resonances (OOR) are seen at
the expected field values, but superimposed on

the curve are small "beat" patterns at field values
which correspond to OOB for the slow mode, as
shown in Fig. 1(a). In other words, it appears
that some of the slow-mode signal arrives at the
receiver transducer simultaneously with the fast-
mode signal, but only when& corresponds to a
slow-mode OOR. Furthermore, the phase of the
anomalous slow-mode signal must be linearly
proportional to B/B„ in order to produce the ob-
served beats.

Direct observation of the signal from the re-
ceiver transducer shows that the slow-mode wave
packet does indeed spread out at OOB, as shown
in Fig. 2. As& is swept through a resonance,
not only does the amplitude of the packet dimin-
ish, but a signal at the sound frequency begins to
spread out far in advance of the packet. In some
cases the spreading effect is much more evident
than the attenuation resonances. In our copper
and silver specimens the n =4 and 5 OOR are not
visible in the attenuation, but we can easily see
the wave packet spread out at values of B„which
correspond to those resonances.

We use a highly simplified model calculation to
show that open-orbit electrons pick up energy
while traversing the packet, and then transfer it
coherently back to the lattice outside the packet.

We first consider the situation where the wave
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