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It is shown that in near-resonant N-photon ionization, chaotic light can be more effi-
cient than purely coherent light by more than the usual factor of N1 (N factorial), This
occurs when the resonant intermediate state interferes with another nearby state. Speci-
fic results are presented for two-photon ionization.

Multiphoton processes depend on the photon
correlation (coherence) properties of the radia-
tion and not simply on the average intensity, as
single-photon processes do.'™ In short,’® the
yield of nonresonant N-photon processes with cha-
otic (incoherent) radiation is larger by a factor of
N'! than with purely coherent (Glauber state) radia-
tion. More generally, the process is proportion-
al to the Nth-order correlation function of the ra-
diation, a result intimately related to the nonres-
onant nature of the process which leads to the
factorization of the field-correlation function
from the atomic parameters. As shown in two
recent theoretical papers,”® in the presence of a
resonant intermediate atomic state, this depen-
dence on photon correlations changes considera-
bly. For example, in two-photon ionization via
one intermediate state, all dependence on photon
correlations disappears when the transition from
the initial to the (resonant) intermediate atomic
state is completely saturated, which occurs in
the limit of large field intensities. Well below
saturation, one has the usual factor of 2! between
chaotic and purely coherent radiation. Similar
results are obtained for resonant processes of
higher order. Under saturation conditions the dif-
ference between the effect of chaotic and coherent
light diminishes. Thus the factor N! has so far
been considered as the maximum ratio between
chaotic and coherent radiation for multiphoton
transitions into a continuum.

In this Letter, we report a surprising new re-

sult. We show that under near-resonance condi-
tions, the ratio of the yields for chaotic to that
for purely coherent radiation can be significantly
larger than N'! (N factorial). This occurs when a
near-resonant intermediate state interferes with
another nearby state or even with a background
due to more than one distant nonresonant level.
The problem can be formulated in more than
one way. We have chosen the resolvent-operator®
formalism which has been used in a number of
recent papers on resonance processes. Consider
an initial atomic state |g) and a single-mode pho-
ton state |n) of frequency w. The initial state of
the system “atom plus field” is |I)=|g)|n). Con-
sider in addition the system states |4 =|a)|n — 1)
and |B)=|b)|n - 1), where the atomic states |a)
and |b) are both connected to the state |g) by a
dipole single-photon transition. Let |[F)=|f)|n
- 2) be the final state for two-photon ionization,
where the atomic state | /), assumed here to be
in the continuum, is connected to both |a) and |b)
by a single-photon electric dipole transition. The
energies of the system states are denoted by w,,
w,, wg, and wy and are measured in inverse sec-
onds, as all Hamiltonians have been divided by 7.
In terms of atomic and field energies we have w,
=W W, W =w,+ 0 -1)w, wy=w,+ @ -1)w, and
Wp=w;+( - 2)w. We shall be interested in pho-
ton frequencies near and around the resonance
frequency w,, =w, - w,. It is rather straightfor-
ward to write a set of equations governing the
relevant matrix elements of the resolvent opera-
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tor G(z). These equations as obtained from the
fundamental relation,’ (z —H°)G =1+VG, are

(2= w)G =14V 4G a1 +V5G gy, (1a)
(2= ®4)G 2=V /G 1 +205V 45G s (1b)
(2= @p)Gp;=Vp,Gr +25V 55G pr, (1c)
(2 = Wp)G p; =VpaG a1+ VpsGais (1d)

where H° is the unperturbed Hamiltonian of the
system and V the interaction coupling the elec-
tron to the field. A typical matrix element of V
is, for example,

V =i (2me? /R)V2L 320 2V 2(g|E  Tlg), (2)

with L the dimension of the quantization box and
€ the polarization vector of the radiation mode.
Since we are working in the single-mode formal-
ism, a more useful expression for V., in terms
of more conventional and easier to determine
parameters is

Var= (ZﬂaFw\ (al € ﬂg»z)l/z, (3)

where F is the total photon flux in number of
photons/cm?- sec and ¢ is the fine-structure con-
stant. In Eqgs. (1b) and (1c) the energies @, and

~ V pal? VarV,
<z -Ga= 2 _l F_Al'>GA1= VarGu+2J ZAi ff’ Girs
F F

7 Z—wp
|VFB[2> : VarV,
e -y YorVea g
(z Wp ?Z-wp Gp1 “G”-Fé}z—wF Al

@y are complex given by @ 4=w, — iy, and @ 5= wy
-1y,, where y, and y, are the widths of states
|a) and | b), respectively. These widths may con-
tain natural as well as induced (intensity-depen-
dent) contributions., There are also shifts which
are not exhibited explicitly here as they are not
essential to the argument, Such widths and shifts
are rigorously derived in the development of the
equations and are not introduced phonomenologi-
cally, although the result would be the same, If
one wishes to include the effect of more than one
state | b), Eqgs. (1a) and (1d) are replaced by

(1a")
(1)

(2 =w)G=1+V Gy +215 V:8Ggis
(2 = wp)Gpr=VpaGar +ZB VesGair

where the summation can in principle be over a
complete spectrum of states | b). In that case,
such states provide a background that interferes
with the contribution of state |a). This back-
ground often depends on the photon frequency to
an extent that cannot be neglected, depending on
the detuning w — w, +w,.

Considering now two interfering resonances,
we solve Eq. (1d) for Gy, and substitute into Eqgs.
(1b) and (1c) which become

(4a)

(4b)

The summations (integrations) on both sides of
these equations can now be replaced by z-inde- !
pendent quantities by setting z =w 4, in Eq. (4a)
and z =wy in Eq. (4b). Each of these terms gives
rise to a real part and an imaginary part, in gen-
eral, The imaginary parts of the terms inside
the parentheses represent the ionization widths
of states |a) and |b), The above approximation
is completely justified for a situation in which
we have a transition into a smooth continuum

and intensities for which perturbation theory is
valid, All of these conditions are satisfied here
and our procedure is essentially the usual way
ionization is introduced in the formalism, The
summations in the right-hand side of the equa-
tions are terms that couple the states |A) and

| B) mainly through transitions into the continu-
um and are very important in our problem, We
introduce the notation I'y=—1Im) |V, [*(w;— wp) ™!
for J=A, B, Uup=2pVarVpp(w,—wp)"*, and Up,
=) rVerVealwy — wp)"'. Because of the near-reso-
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nance conditions and the smooth continuum, the
above-defined quantities are numerically com-
parable and often practically equal,

We can now solve the system of Egs. (1a), (4a),
and (4b) for G;;, G,;, Gp;. This involves finding
the roots of a third-degree algebraic equation in
z. From the expressions for the G’s we obtain
U (t), Uy {#), and Ug,(#) through the inversion
integral U(¢) = (2m8) ™! ,(cdze"""G(z). The fully-
time-dependent ionization probability is given by

P(n;T)=l_ ’U”(T) Iz_ lUAI(T)lz- IUBI(T)P,
(5)

where T is the interaction time and » indicates
that P is a function of » since our initial state
contained exactly » photons, The effect of photon
correlations is obtained by calculating the aver-
age

(P(T))= 35 ponPlt; 1), (6)
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where p,, is the photon probability distribution in
the initial state. Recall that for chaotic light
Pon T = (n)"/(1+(n))" *! while for a pure coherent
state p,,*"=e” " (n)"/nl, where, in both cases,
(n)=23,bmn is the average number of photons
(the intensity).

The above treatment of the problem of two inter-
mediate resonances with ionization is essentially
rigorous for the type of intensities that interest
us in this paper. Under certain conditions, it is
also possible to describe the process by an ap-
proximate transition probability per unit time
(rate). Although less rigorous in general, it
yields surprisingly good results in limiting cases;
that is well below or well above saturation, It
also turns out that it provides a very good esti-
mate of the photon-correlation effects,

We give here a very brief outline of the deriva-
tion of such a rate. This is appropriate when the
effect of one of the intermediate states, say |b),
can be replaced by a contribution varying very
slowly with the photon frequency; which implies
frequencies around the other resonance |a). We
solve Eq. (1c) for Gg; and substitute into Egs.
(1a) and (1d). In the resulting expression, we re-
place z - Wz by wy~ @y = w,— @y since we shall
confine ourselves to photon frequencies for which
w,=w, in the sense that |w, — w;| « [wg —w,|. The
resulting expression for G, can then be solved
and we can again make the replacement z ~ wy
=), — wp. In the summation (integration) over F,
the principal value is taken, Substituting now Gg;
into Eqs. (1a) and (1b), we obtain a system of two
linear algebraic equations for G;; and G ,; which
can be solved exactly—in much the same way
that the equations for two strongly coupled levels
are solved, except that now the effect of the other
level(s) is included, The complete derivation in-
volves considerable algebraic detail which shall
be presented elsewhere, The resulting transition
probability per unit time is

[1+g(n-1)P
2 +An[1+qgn -1

W(n) =Cn(n - 1) (7
where 0=w - w,+w, A=w,~w, A=7,% q=Pfdwf
XBY s ¥ 5a¥gp /7 o(A+0)0, the coefficients C and f
contain all constants, and P indicates the princi-
pal value, The parameter ¢ is an approximate
measure of the interference between the contri-
butions of |a) and |b), For ¢=0 we recapture

the special case of a single resonant intermediate
state of Ref. 6, If one wishes to include the effect
of more than one state |b), the derivation is simi-
lar but ¢ will then involve a summation over b

with Eq. (7) remaining the same, The derivation
outlined here can also be obtained using Egs. (1a),
(4a), (4b), and (1d). Note also that, in general,

6 should contain intensity-dependent terms?® in
Eq. (7). One can show, however, that they are
negligible for the problem under consideration,
The effect of photon correlations is again obtained
by averaging W(n) over the photon number distrib-
ution p,,. We emphasize that this result is ap-
proximate but in our calculations we find it to be
a very good approximation, One must, of course,
always compare to the more rigorous time-de-
pendent result of Eq. (5).

We have performed calculations of {(P(T)) as
well as (W) for chaotic and coherent light with
atomic parameters corresponding to optical tran-
sitions in alkali atoms where |a) and | b) could
be a P/, and P., fine-structure pair. Typical
results for the ratio p of the yields for chaotic
light to coherent light are shown in Fig, 1, As
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FIG. 1. Ratio of resonant two-photon ionization
yields for chaotic light to that for coherent light. The
variable (n) represents the average number of pho-
tons in the laser mode. The numerical results have
been obtained for a scaled problem to facilitate num-
erical computation. In an actual atom, the effect would
be observed for (n) about two orders of magnitude
larger than shown here, Curve 1A corresponds to the
results of Ref, 7 (single resonant intermediate state).
Curves 1 and 2 correspond to two interfering reso-
nances and have been obtained using the approximate
equation (7). The parameters used in the calculation
of the curves were 6=3x 107 Hz, A =0.695x 10'% Hz?,
g = 0.0455 for curve 1; 6=3x 10" Hz, A =0.695x 10'%
Hz?, ¢ = 0.0 for curve 14; 6=3x 10 Hz, A =0.695
% 105 Hz?, ¢ = 0.0045 for curve 2, Curve 3 has been
obtained through the time-dependent expression of
Eq. (5) for 7 =10 nsec, 6= 1.2x 10° Hz, and A = 3 x 10°
Hz, with matrix elements corresponding to the 65— 7P
— €D, €S transitions in Cs, For this curve the scale of
(n) should be multiplied by 10~2,

113



VOLUME 40, NUMBER 2

PHYSICAL REVIEW LETTERS

9 JANUARY 1978

mentioned earlier, p=2 for nonresonant process-
es as well as for a single resonant state well be-
low saturation, In the limit of large intensity and
a single resonance, p decreases monotomically
to 1 (see curve 14 of Fig. 1). Clearly we have a
drastically different behavior when the interme-
diate resonance interferes with other states,
Again the weak- and strong-field limits are p=2
and p=1, respectively, as they should be, Be-
tween these two limits, however, there is an in-
tensity regime where p reaches a maximum sig-
nificantly larger than 2, Its exact value depends
on the particular set of atomic parameters and
the detuning, As seen in Fig. 1 we have obtained
values as large as 3,75. Evidently, the inter-
mediate virtual state resulting from the inter-
ference of |a) with other state(s) is more sensi-
tive to the fluctuations of the light source thus
giving a value of p significantly larger than 2,
Stated somewhat differently, as a result of inter-
ference there are virtual transitions of “apparent”
order higher than 2,

To facilitate the numerical calculation arising
from the required summation in Eq. (6), we have
scaled the parameters of the problem, Thus the
effect represented by the curves of Fig. 1 would
occur—in a real atomic transition—for (n)
about two orders of magnitude larger than shown
in the figure. These values of {(n) correspond to
cw-laser powers in the range of 10—-100 mW and
bandwidths of the order of 0,01-0,001 cm™!, Al-
though relatively weak by laser standards, these
intensities are sufficiently large to saturate a
typical bound-bound atomic transition, The phys-
ical picture that seems to be emerging is that
the effect occurs when the light intensity is suffi-
ciently large to populate the interfering excited
states but not so large as to cause saturation of
the ionization, Ionization is here the dominant
damping mechanism for large intensities.

We have also considered three-photon ioniza-
tion with a two-photon near-resonance between
the initial and two bound excited states in which
case we have found ratios as high as 9.35 instead
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of 3!1=6. It is evident that similar effects are
more pronounced in higher-order resonant proc-
esses. Our results demonstrate that photon-cor-
relation effects in multiphoton processes contain
considerably more variety than hitherto suspect-
ed. In combination with resonant intermediate
states, they presently constitute one of the most
interesting and active areas of investigation.®!!
If as we have shown the ratio p can have a maxi-
mum value larger than N! and also depends on the
laser duration, then experiments of the type re-
ported in Refs. 3 and 11 acquire new significance.
A complete account of this work with further re-
sults will be published elsewhere. This work was
supported by National Science Foundation Grant
No. PHY 76-23163.
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