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We present the first theoretical results on the anomalous field dependence of the Neel
temperature for a system of loosely coupled classical Heisenberg chains with orthorhom- i

bic anisotropy for different directions of the applied magnetic field. The results compare
favorably with the experimental phase diagrams of a series of selected S =

&
compounds

with varying degrees of one dimensionality and anisotropy.

The ordering temperature &N(H) of a pseudo
one -dimensional Heisenberg antiferromagnet may
increase drastically when an external magnetic
field is applied. This initially surprising effect
has been documented recently by a number of ex-
perimental results. ' ' It seems that the theoreti-
cal approach suggested by Villain and Loveluck, '
which is based on the behavior of the correlation
length within the individual chains in the classical
spin model, ' "gives at least the right order of
magnitude. However, as we will show, the dras-
tic influence of some anisotropy resulting in es-
sentially different phase boundaries with the field
applied along different directions (including the
introduction of a, spin-flop pha. se) ca.nnot be re-
produced by this isotropic theory. Therefore a,

conclusion about the validity of the description of
this effect is precluded so far.

In this Letter we will present the first results
of a transfer-matrix approach for the classical
Heisenberg chain with small orthorhombic an-
isotropy. We will show that this approach is cap-
able of reproducing the field dependence of the
Noel temperature in a series of real pseudo one-
dimensional Heisenberg S = 2 systems with the
field along each of the three principal axes.

In Figs. 1-3 our data on the phase diagrams
are presented for a selected, representative
series of pseudo one-dimensional systems. Some
characteristic parameter values of this series
are tabulated in Table I. The data were obtained
from a continuous heating method, thus identify-
ing the transitions by the maxima in the specific
heat. From inspection of these results it is ob-
vious that in a general sense the rise in TN(H)
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FIG. 1. Experimental phase diagram of (NC5H6)
MnC13 H20 (PIC), together with the theoretical pre-
dictions. Data for the hard axis are not shown since
they reveal a more complicated phase diagram which
is most likely due to a sma11 canting of the magnetic
moments.

strongly depends on the degree of one dimension-
ality, characterized by the entities in Table I.
This indicates that basically the understanding of
this anomalous behavior must be sought in the
properties of the individual chains. Therefore,
we will treat the system as consisting of loosely
coupled chains.

For such a system TN is implicity given in the
mean-field approach by'

2zJ''y(T~(H), H) = 1,
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FIG. 3. Experimental phase diagram of (CH3)2NH2
x MnC13 (DMMC), together with the theoretical pre-
dictions.

FIG. 2. Phase diagram of CsMnBr3 2820 {CMB)
and CsMnC13 2820 (CMC). The drawn curves denote
the theoretical prediction in the presence of ortho-
rhombic anisotropy. The theoretical results for the
isotropic case are not plotted separately, since they
almost coincide with the predicted behavior for the
intermediate axis.

where X is the staggered susceptibility of an iso™
lated chain and sJ' is interehain interaction.
Hence we will have to evaluate the staggered sus-
ceptibility, X(T,H), of an isolated chain with or-

thorhombic anisotropy. We will not apply the us-
ual approximation of X in terms of the correla-
tion length. '-" As we are dealing with high-spin
(8 =—,) systems we will evaluate X in the frame-
work of the classical spin model. Moreover, it
has previously been shown that the classical mod-
el gives remarkably good results for those ther-
modynamic variables in the paramagnetic state
which greatly depend on long-range correlation. "'

We will consider here the classical nearest-
neighbor Hamiltonian of orthorhombic symmetry,

TABLE I. Review of some characteristic parameters of the compounds studied in this
Letter. TN(0) is the zero-field ordering temperature; J and J' are the intrachain and
interchain exchange coupling, respectively; and S«,, denotes the entropy ratio S (TN)/
S(~). The anisotropy parameters + and P are defined in the text.

Compound
TN(0)

(K) seri&

(NC 5H6) MnC l3 H20
Cs MnBr3 ~ 2H20
Cs MnC13 ~ 2H20
(CH3) 2NH2MnC13

2.38
5.75
4.89
3.60

—0.7
—2.6
—3.0
—5.8

39%
15%
12%
39'

Vx]0 ~

10
8x 10

10

4x10 2

1x10 '
4x10 '

1.15x 10

1.5
3
4
8

11
12, 13

13
14
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given by

K.~~(& ', K.,)

Z(2g HS(S +S;,')+2JS(S+l)[5; 5;,+&(S S;,' —35; 5~,)+&(S;"S;,"-S S;„,')]), (2)

where

S; = (S;",S,S ) = (cosy; sin8;, sing; sin8;, cos8;).

(5)

and

exp[ -X$„$,)/kT] = (2w) ' Z Z K„,(8„8,)exp[i(my, -kp, )1.

The central problem in the transfer-matrix approach is to solve the integral equation

f'd8, fo"dy, sin8, exp[ -K(5„'5,)/k T] ((8„y,) =& ((8„y,) (4)

because all static properties of the chain can be formulated in terms of the eigenvalues and eigenfunc-
tions of this equation.

In order to reduce the number of integration variables in Eq. (4) we introduce the Fourier expansions

g(8;, y,) =(2msin8, ) "' Z @' (8;)exp(imp;)
m=-~

Substitution of Eqs. (5) and (6) in Eq. (4) yields [because of the orthogonality of the functions exp(imp, )]
the set of coupled integral equations

d82(sin8, sin8, )"'K,(8 „8,)4',(82) =X4 „(8,), m = 0, +1,+ 2, . .. .
$=~ ao

It will be clear that Eq. (V) cannot be handled nu-
merically unless the infinite summation is trun-
cated in some way. In the case of axial symmetry
around the field direction' "this gives no com-
plications because K, (8 „8,) &„,&K, (8„8,),
and only one term in the summation survives.

If the diviations from axial symmetry are
small, that is l2JS(S+1)e l«kv', a meaningful
truncation is possible because one finds a rapid
decrease in magnitude of the K,&(8„8,) with in-
creasing 1m -I I. Moreover, only a restricted
number of equations has to be retained because
the susceptibilities depend mainly on the per-
turbed eigenstates related to m=O, +1 in the axi-
ally symmetric case. Even after this truncation,
practical calculations are almost impossible with-
out further simplifications. However, exploiting
the C,„symmetry of the system, Eq. (7) can be
factorized into four smaller subsets. The inte-
grals over ~, occurring in each of these subsets
are approximated by a discrete quadrature
scheme. The choice of a set of values for ~, iden-
tical to the abscissas used in the integration over
~2 results in a matrix eigenvalue equation' which
can be diagonalized by standard routines. The
dimension of these matrices, which ultimately
sets a limit to the applicability of the method, in-
creases progressively when I J I/OT' increases

because both the number of coupled equations and
the number of abscissas needed to obtain results
of sufficient accuracy grow rapidly at lower tern
peratures.

Using the method sketched above, we calculated
phase diagrams for (NC, H, )MnC1, H,Ot(PMC)
CsMnBr, ' 2H, O (CMB), CsMnCl, '2H, O (CMC),
and (CH,),NH, MnC1, (DMMC). In order to elimi-
nate the interchain molecular-field constant zP',
Eq. (1) was applied in the form y(&N(H), H )
=g(T~(0), 0), where y is the appropriate staggered
susceptibility. Basically we did not use adjustable
parameters; the values for J were fixed to the re-
ported values. From the zero-field energy dif-
ferences, per spin, between the antiferromag-
netically aligned states parallel to the easy and
intermediate axis (&E,) and the easy and hard
axis (&E,) we define the reduced anisotropy en-
ergies o and P as

a =&E,/2I J lS(S+1), p =&E2/2 I JIS(S+I). (8)

Note that the values of e and & for given n and p
depend upon the correspondence between the co-
ordinate system x,y, ~ and the magnetic axes.
For CMC and CMB, & and p were taken from the
literature, "'"whereas for PMC and DMMC the
anisotropy parameters were obtained in an analo-
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gous way, as will be reported elsewhere. " Theo-
retical phase diagrams obtained with quadratic
single-ion anisotropy instead of Eq. (2) showed
only minor deviations from the results presented
in Figs. 1-3.

With the field applied along the easy axis, we
have to consider two different susceptibilities
corresponding to the directions of the staggered
field in the antiferromagnetic and spin-flop state.
The phase boundaries found in this way intersect
at the bicritical field IIb;, which is given to a very
good approximation by gtLBHb;, =4 I J IS~2o.. For
fields higher than Hb;, the spin-flop phase yields
the highest, and thus physically realized, value
of T~(H), while for fields smaller than Hb;, the
situation is reversed.

The agreement between experimental and theo-
retical results is satisfying but it deteriorates
somewhat at higher values of the reduced field
gpsH/2 I /IS. Whether this is due to a deficiency
in the applicability of Eci. (l) at high fields re-
mains to be seen. Possibly a self-consistent type
of approach would give better results. However,
these high-field deviations could also be due to
the suppression of quantum fluctuations, as de-
scribed by Imry, Pincus, and Scalapino. " There-
fore it seems worthwhile to investigate the effect
of quantum corrections on the present theory.
The results of the present analysis may be sum-
marized by stating that the, at first sight, anoma-
lous behavior of the phase boundaries of pseudo
one-dimensional Heisenberg systems can be quan-
titatively understood from the behavior of the
staggered susceptibilities of the isolated chains,
provided that the orthorhombic anisotropy terms
are not neglected.
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