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We formulate an extended time-dependent Hartree-Fock approximation which includes
particle collisions. As the configuration-space analog of the quantum Boltzmann equa-
tion, it can be utilized to study the dynamics of nuclear or other fermion systems when

irreversible dissipation is present.

Recent renewed interest in the time-dependent
Hartree-Fock approximation (TDHF) for the mi-
croscopic description of the dynamics of nuclear
systems was pioneered by Bonche, Koonin, and
Negele.! Since then, many TDHF calculations
were carried out’ and many different theoretical
investigations were initiated.>® However, in the
TDHF approximation, the fermions are assumed
to interact only through the mean field and the
collisions between particles due to residual inter-
actions are neglected. Because particle colli-
sions are capable of altering the occupation prob-
abilities and dissipating energies, the pattern of
behavior of the quantum fluid can be that of hydro-
dynamics® or elastic response,™* depending on
the degree of particle collisions. A careful anal-
ysis of particle collision also helps our under-
standing of dissipative phenomena for which much
progress has been made recently.® However,
the incorporation of particle collisions into the
TDHF approximation has, up to now, not been
formulated.

Previous extension of the TDHF approximation
was discussed in terms of a multideterminant
representation and Pauli’s master equation.? In
this Letter, we present a different extended time-
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dependent Hartree-Fock approximation (ETDHF)
in which collisions between particles are explicit-
ly taken into account. The final set of equations
turns out to be simple and physically transparent
and may be of practical interest to those working
in the field of the dynamics of nuclear or other
fermion systems. Furthermore, concepts such
as entropy, temperature, thermal equilibrium,
and local equilibrium can be naturally and quan-
titatively introduced. The approach from non-
equilibrium to thermal equilibrium can be quan-
titatively studied.

Being the configuration-space analog of the
quantum Boltzmann equation, our set of equations
should retain certain characteristics of the Boltz-
mann equation. It should be closed Markovian in
the sense that all the quantities are to be speci-
fied at the same time coordinate.” This require-
ment necessitates an integration over the colli-
sion history analytically. Just as in the Boltz-
mann equation, we wish to keep terms only up to
the second order in the residual interaction. Fi-
nally, as the Boltzmann equation violates time-
reversal invariance, the latter concept needs to
be properly introduced.

The starting point of our formulation is the
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equation of motion for the Green’s function®® g<(1,1’)
[iha—+ it 29 2y 2 U (1) 4T (1')1 <(1,17) =I(1, 1) (1)
atl atl‘ zm 1‘1 1'1' MHF MHF g b b 3

where the argument 1 (and similarly 1’) represents the collection of the spatial coordinate T,, the spin
and isospin coordinate £,, and the time coordinate ¢#,. The Green’s function is defined as

ig<(1,1) == %), @)
and
ig”(1, 1) =@yt (3)

where the expectation value is taken with respect to the dynamical wave-packet-like state in question.
The modified Hartree-Fock potential Uy (1) is given by

UMHF(I)g<(1’ 1)=- if deU(xl’xZ)a[g<(17 1')g<(2! 2+)]t1= iy (4)
where
alg<(1,1)g°(2,2")]=g(1,1)g°(2,2%) - g°(1,2*)g*(2,1"),

x represents T and £, and the symbol 2% implies ¢,* 2 ¢,. We envisage that the mean-field theory of
TDHF, as obtained by using an effective interaction v (x,,x,) and neglecting the collision matrix I(1, 1)
in Eq. (1), is a good and approximate representation of the dynamics. It is now necessary to include
the collision term involving only residual interaction »’(x,,x,) between the fermions in the Born scat-
tering approximation.

We shall specialize to a representation of the Green’s function in the form

—ig>(x1,t1;x1', t,') =Z:> "x(T)zl)A(xntl)d)x*(xf;tl')a (5)

with the complementary Green’s function
ig>(x1:t1;x1',t1')22[1—n)\(T)]éb)\(xuh)lP)\*(xf,tl'), (6)
x

where T =5(¢ 1+2,"). The effect of particle collisions is readily separated by choosing the complete set
of single-particle states ¥, ’s to satisfy the modified TDHF equation:

iﬁ%lp)\(x,t):(—% V2+UmﬂF(x,t)>¢’x(x’t)’ @

where the potential Uyyr as defined by (4) is the same as the ordinary Hartree-Fock potential except
that the occupation number is now time dependent. Such a choice of a complete set leads to

;’—t ”)\(t) == (l/ﬁ)f dx,dx," P\* (xut)l(xut;xl"t+)¢>\(x1':t)- (8)

We complete our formulation by evaluating the right-hand side of the above equation. The evaluation
proceeds as follows.
The equal-time collision matrix is given by®®

I(xlytl;x1’5t1+) == Zf dx2 [v,(xlyxz) —v'(x1,9x2)]g20(1) 2’ 1,7 2+)|t1'= tl"'! (9)

where ¢, =¢, and g, is the two-body Green’s function due to particle collisions. As the hierarchy of
equations coupling the different Green’s functions are the same whether the Green’s function is defined
with respect to the dynamical wave-packet-like state or in terms of a grand canonical ensemble, the
resultant perturbation expansion'® of g,(1,2;1’,2%) is the same as obtained previously by Martin and
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Schwinger® and Kadanoff and Baym® which, up to the Born collision term, is given by
£20(1,2;1,2%)=(/h) [ dx, %, v’ &, %) [} aFdele” (1, D)g> (2,2)g°(1,1)2° @, 2)
-@lg<(1,Dg 2, D)]g>(1,10g>@,25)} . (10)
to=

Pl

As in Kadanoff and Baym,® the resultant collision matrix will lead to a time-reversal violating Eq. (1).
To integrate over #,, we shall consider the case in which the mean field is a slowly varying function of
time. Furthermore, as the Green’s function is expected to peak sharply about the relative time co-
ordinate so that only a small region of t—1 is important in the integral of (10), it is reasonable to as-
sume there that the time dependence of the single-particle wave function satisfies the approximation

w)\(xyT+%T)gexp[—ie)\(T)T/zﬁ]zl))\(x’T)y (11)

where €,(T)=@,(,T), h(T)y,(x,T)) and 1(T) is the modified Hartree-Fock single-particle Hamilto-
nian defined by Eq. (7). Such an approximation is found to account quite well the predominant time de-
pendence of the TDHF single-particle wave functions for small time intervals of 7.'* In a related man-
ner, it is also reasonable to assume there that

G, +E )= ey, (12)
na(G(E, +2)) = ny (). (13)
From Egs. (9) and (10, the result of the integration over f, gives the equal-time collision matrix

I, t;x0 1 )== i [ dx"[v’ (e, x") =0’ (', x")] 3 [(1 =) (X = nodngn, = nyma(1 = n5)(1=n,)]

x[(e,+€; —€5— €4~ in)" l]n»o¢1(x,t)¢20¢",t)¢3* " 1) (', 1K1, 2|07 |4, 3 - 3, 4)|2. (14)

Thus, the occupation-number equation [Eq. (8)] becomes

8—";?—):% %4 6(e,+€;—€5—€)[(1=ny) (1 =n)namy —nymo(1—n5)(1=n,)]{1,2]07]4,3-3,4)|°. (15)
Together with Eq. (7), this equation completes our formulation of the ETDHF approximation. It de-
scribes properly the physics of the collision process and could have been written by taking note of en-
ergy conservation, Pauli principle, and transition probabilities.'* Thus, Eq. (15) can be used not only
in ETDHF but also in other microscopic non-self-consistent descriptions of collective dynamics.

With the Green’s functions, corrections to the TDHF can be systematically introduced by consider-
ing Green’s functions of higher and higher orders.>® Furthermore, with the explicit determination of
the collision matrix I(x,,x,’), macroscopic equations can be obtained in the usual way.* For example,
one can show that the equation of continuity is preserved, that the total momentum is conserved, and
that the total energy, which can be shown to be conserved, is split into the kinetic energy, the poten-
tial energy, and a new term which depends on particle collisions.

It is worth noting that under the constraint of #, =n,, n;=n,, and the constancy of the matrix element,
we obtain an analytic solution of Eq. (15) when the “levels” E, =€, +€, and E g =€, +€, are linear func-
tions of time and cross at ¢ =¢,. The solution, which appears to be novel, can be easily shown to be

7, () = 2 (n10 +mg0) + (210 = 130) f ()], (16)

n5(t) = 2 (10 +1m30) = (10— 1m30) f @)1, (17)
where

) =% [ 1+ (%—‘IYJ exp[3ma’G20(t —t,) - <%Q>2 }- B ’ (18)

Qa0 = 20220 = 120), a2=8(nm+n30)(1—&9¥-39>, (19)

(20)

2 d
6211, 200/14,3-3,91*| & (B4~ E,)
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Here, the additional subscript O refers to values
before the levels cross and 6(t —1,) is the step
function. This kind of level crossing is distinct-
ly different from the usual Landau-Zener level
crossing. For, if the rate |d(E, - Eg)/dt| is
large, the occupation numbers are unchanged,
as they should be, but, if the rate is small, the
occupation probability is redistributed according
to ny~ng~3(n,, +ng). It is a redistribution such
as the latter kind which brings an irregular dis-
tribution eventually to a Fermi-Dirac distribution
characterized by a temperature.

It is easy to obtain many important results re-
garding thermal equilibrium and irreversibility.
One defines an entropy s by

s==kY, [ny\1nn, + (1 =n,) In(1 -#n,)]. (21)
X

One can prove easily the well-known H theorem
that the entropy always increases,

as(t)/at =0, (22)

where the equality occurs at thermal equilibrium
which is characterized by stationary occupation
probabilities in the presence of particle collisions
and corresponds to the vanishing of the collision
matrix at all spatial points, achieved with a Fer-
mi-Dirac distribution of occupation probabilities.
In contrast, local equilibrium occurs when the
collision matrix vanishes locally.

Approximation (11) makes use of only the ex-
pectation value of the single-particle Hamiltonian.
There is, however, a spread of the single-parti-
cle strength because of particle collisions and the
dynamics. If one assumes that each particle in a
single-particle state has a lifetime, as in Landau
Fermi-liquid theory,' then €; becomes €; — iT; /
2. In consequence, the more general form of Eq.
(15) is obtained by replacing the 6(e, +€,—€,-¢€,)
by the Lorentzian

le I
27T[(€1 +€y;— €53~ 64)2 + (§F1234)2] ’

and the step function 6(t —¢,) in Eq. (18) by

l -1< 11 ___Q_(t_t)> l
7t 2| g BamBR)| T )y

where I'j,, =T, +T,+;+T,. This introduction of
a width allows the occupation numbers to change
less abruptly and helps the numerical implemen-

tation of the ETDHF approximation.

To summarize, we have successfully extended
the TDHF approximation to include particle col-
lisions. The new formulation facilitates discus-
sions of irreversible dissipation, thermal and
local equilibrium, and hence hydrodynamical or
nonhydrodynamical behavior of nuclear or other
fermion fluids.
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