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could, of course, lead to a better agreement be-
tween ca.lculation and experiment, but it would

be more natural to attribute the "missing"
strengths to weakly excited or continuum states
which are not identified experimentally. If we
assume a rms radius in the range of 4e84 to 4.97
fm as predicted by HF calculations, then the
"missing" strength becomes of the order of 50Fo.

This is a particularly unrea, sonable result for
neutron transfers on the N =50 closed-neutron-
shell "Sr nucleus.

From the results for proton-transfer reactions
also shown in Table II, it is observed that using
the rms radius of 4.66 fm, the total sum slightly
exceeds the upper limit, thus indicating that the
rms radius of 1g» protons may be slightly larger
than that of the 1g,~, neutrons. Any unobserved
proton-transfer strength would further increase
the deduced value of the rms radius.

In conclusion we have shown tha, t, by analyzing
existing data for various nucleon-transfer reac-
tions on Sr isotopes, strong support is obtained
for the result of Sick et al. ' that the rms radius
of 1g,&, neutrons in "Sr is 4.66+ 0.04 fm.
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A new strength function continuous in energy and a smoothing parameter is constructed
which arbitrarily closely approximates the discontinuous strength function for line broad
ening defined by Lane. The functional form of the Lane strength function is then derived
for a fragmented isobaric analog resonance. Its non-Lorentzian form is explicitly and
qualitatively different from that assumed in a recent analysis of isobaric analog reso-
nances.

The Duke University high-resolution data on
isobaric analog resonances (IAR) have been ana-
lyzed using a, multilevel A matrix to extract the
spin, parity, resonance energies, and widths of
all the observed fine structure. Some of these
data have been analyzed' using the asymmetric
Lorentzian strength function (SF) which results"

from using the I orentz-rveighted average of
Brown' to evaluate (y~'/D~), where y~' are the
reduced widths and Dz is the level spacing. But
the most complete analysis' is based on an SF
defined by Lane' which uses "box averaging, " i.e. ,
constant weight over the averaging interval, to
evaluate (y~'/D„). In their analysis Bilpuch eta$
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assumed that this latter SF also has the shape of
an asymmetric Lorentzian depending on the IAR
parameters in the same way as the Lorentz-
weighted average. However, consistent sets of
IAB parameters could not be found by attempting
to fit the Lane SF using this assumption. ' This
result has been attributed by Lane, Lynn, and
Moses' to a general failure of the SF to describe
spreading when the spreading width I"~ is compar-
able to the level spacing. Unfortunately, this is
the case for almost all observed IAR.

The purpose of this Letter is to show that vari-
ous difficulties enumerated by Lane, Lynn, and
Moses arise from their use of box averaging to
define an SF, and that their comments and con-
clusions simply do not apply to the Lorentz-aver-
aged SF. Furthermore, the failure of Bilpuch et
a5.' to obtain consistent sets of IAR parameters
using the Lane SF is explained by the fact that the
energy dependence of the Lane SF is not an asym-
metric Lorentzian but a more sharply peaked
function which has a different functional depen-
dence on the IAR parameters.

The basis for the discussion is the K-matrix
formulation"' of the theory of configuration
broadening of a doorway state. The resonant
part of the K matrix (or its reduced form obtained
by factoring out the energy dependence due to pen-
etrability of the incident particle) has exactly the
same form as the R matrix although its param-
eters have a somewhat different significance. '
The reduced widths and resonance energies of
the IAR found from the Duke University multilev-
el fit can be identified with the corresponding pa-
rameters of the K matrix. In the ensuing discus-
sion, I consider only the case in which the fine-
structure states responsible for fragmentation of
the IAR have zero intrinsic width. This case is
easily generalized to the case of interference be-
tween acquired and intrinsic widths, and the fig-
ures in this Letter display fits which include the
resulting asymmetry.

The resonant part of the reduced K matrix in
the elastic channel (channel indices are sup-
pressed) for an IAR at E„of reduced width y„'
fragmented by coupling through matrix elements
M, to fine-structure states at ~, is

Z, (Z) =y„'[Z —E„-g, M,.'(Z —e, )]- '. .

The poles and residues of this reduced K matrix
are the resonance energies E~ and reduced widths
y~' determined from a multilevel fit to the Duke
Univer sity high-resolution data. An identity re-

lates these to y„' and the sets (e;}and (M, ]
2 2

0 x =y~ Z -Z~-Z Mg
E-E~ E —e] (2)

) ~ (I/m)M;
. (E-e,)'+I'

(4)

Now observe that S(E;I)= —ImK(E +iI)/v and use
the fact that Eq. (2) is an identity in E. The para-
metric form of S for a fragmented IAR follows
directly:

r~'I s/»
(Z —Z„)'+(r,/2)'

The parameters in this SF are I"~ = 1 ~ +2I, I ~

=2p(M; /D))q, E~=ZA h+s~ and bq=g(Z —&g)M) /
[(Z —e&)'+I']. This result is actually valid uhat
ever the properties of the (e&] and (M&'], but it
is useful only if the averaging interval is taken
sufficiently large for I;~ and 6, to be constant.
For the picket-fence model these quantities can
be evaluated analytically; for them to be constant
requires only that I be chosen so that exp(-2'/
D) «I! This condition is well satisfied for I~ D/

For the picket-fence model in which all matrix
elements are equal to M and the level spacing is
a constant D, the envelope of the reduced widths
is a Lorentzian

Dy„'I'~/2n.
(E~-E~) +(W/2) (3)

with parameters I" = 2''/D and (W/2)' = (I'~/2)'
+M'. ' In this case the sum rule g y ~' =y„' and
the envelope determine all the parameters. In a
real nucleus the M fluctuate about some aver-
age value and levels are not equally spaced. %ith
care "average" values of the parameters can still
be extracted from the width distribution. " But
for more reliable analysis a Precisely defined
averaging procedure must be used to generate a
strength function (denoted SF), schematically de-
fined as S(E)=(y&'/D ~), whose shape is complete-
ly determined by a (small) set of average param-
eters characterizing the IAR and its spreading.

In connection with the S matrix, Brown devel-
oped a remarkably useful procedure for perform-
ing Lorentz-weighted averaging of dispersion
sums by evaluating them at a complex energy. 4

The method can be applied to the K matrix by de-
fining the SF and Lorentz averages as follows"':
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2.
It must be noted that Lorentz averaging is re-

markably suited to the definition of the SF for a
fragmented doorway state. No other averaging
procedure can be expected to yield an exact rela-
tion between (y~'/D„) and (M /D, ). This can
easily be seen by considering the general prob-
lem of relating (f) and. (g) when a relation, such
as f = (1+g) ', holds.

Note from Eq. (4) that this SF is well defined
for weak, or even zero, coupling. In the latter
case the SF is a Lorentzian of width I ~

= 2I and

height y„'/In centered at E„. For weak coupling
the statistical significance of the spreading width
F ~ is compromised more by errors in the exper-
imental determination of small widths than by the
small spreading widths. The crucial point here
is that the range of energy over which M /D, ex-
hibits only statistical fluctuations is of the order
of MeV compared to spreading widths of tens of
keV. Analysis of the variance of the F shows
that the fractional variance is of order 0.2(I/
D) ' '." The limitation on increasing I/D so that
I'~ yields the average (M, '/D, ) for the full "range"
of M /D& is imposed by the larger experimental
uncertainty in determining small widths in the
wings.

Turn now to consideration of SF defined by

I ane using box averaging':

Sg(E;I) =— Q yq .
(g~ gg) 2(12

(6)

The contour consists of traversal in a positive
sense of a rectangle of width 2e with sides par-
allel to the real axis, a distance e above and be-
low the real axis, extending from E -I to E+I.
For e «D, I one can neglect the contributions
from the ends and obtain a continuous approxima-
tion to SL(E;I):

First observe that SI, is a discontinuous function
of energy for any choice of I; its shape is not
specified by a small set of average parameters.
Moreover, when the strength of the IAR is spread
over a small number of levels, even the ratio of
the discontinuities to the maximum cannot be re-
duced by increasing I. Therefore, a procedure
for smoothing is an essential part of the defini-
tion of the strength function when 1" /D is of or-
der unity. l next specify such a procedure in con-
structing a continuous function of energy and a
smoothing parameter e which approximates S&

arbitrarily closely for small e.
Begin by introducing a contour integral into Eq.

(6) in order to extend the sum over all $yz'):

S,(Z, I)= d—zP. y"

(8)

It can be shown that both Sq and Sz integrate to the area y„'=g

zygo',

so their difference is a fluctuat-
ing function of zero average value. In Fig. 1 are shown S& and SI for the 2 level of 'K with e =0.01D
= 0.1 keV and I = 2D = 20 keV; the two curves can only be distinguished at corners.

To find the parametric form of S~ for a fragmented IAR, insert Eq. (2) into Eq (8) an.d again evalu-
ate the contributions to the contour integral from the sides of the rectangle parallel to the real axis:

2 A

S -(Z I.)-=" t~- E" E"-t~- E-I-

The parameters F& and E~ are Lorentzian aver-
ages related to ~ in the same way as F~ and E~
are related toI, i.e. , I'~=I, +2& andE„=E„
+6, . Both quantities were taken to be constant
in doing the contour integral, requiring that e
~D/2. Direct integration of the area under S„'"
also gives y„'. Comparing Eq. (5) with Eq. (9) we
see that the energy dependence of the Lane SF is
completely different from the Lorentzian form
assumed by Lane and his collaborators' ' in their
attempts to determine the IAR parameters by fit-
ting the SF. In fact, SL'" can be expressed as
the arctangent of a Lorentzian, with some care

! necessary in choosing the proper branch.
Numerical confirmation of each of these re-

sults is shown in Figs. 1 and 2 by application to
the/'= — IAR state in 'K atE =1.875 MeV.
For this purpose all the above results were gen-
eralized to include intrinsic widths jy,.'}of the
uncoupled fine-structure states. These widths
introduce an asymmetry described by two addi-
tional parameters, y =tan '(-(M;y; /D, )/y„) and

= (y & /D&) For I= 2D = 20. keV, Fig. 2 shows
the result of a least-squares fitting of S'" (E;I)
to the microscopic Lorentz-weighted average
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FIG. 1. Lane strength functions for 'K 2 for I = 20
keV, e = 0.1 keV. Solid, SL(F.;I); dashed, SI (E;I,e);
and dash-dotted, S~" {E;I,e).
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FIG. 2. Lorentzian and Lane strength function for
4'K

& for I =20 keV, c = 10 keV. Solid, Lorentzian
S(E;I); dotted, Lorentzian S (R;I); dashed, Lane
S~(E;I,e); and dashed with crosses, Lane SL {E;I,e).

S(E;I) to determine E„=1875 keV, y = 0.084, y„'
=85 keV, II =17.2 keV, and SO=0.04. Assum-
ing I'I~ = F, ~ and 6,= 6, since these are the aver-
ages of uncorrelated quantities which are inde-
pendent of the averaging parameter for e, I~ D/
2, I calculate the parameters for S~'" (E;I,e)
and have shown in Fig. 2 the excellent agreement
between this function and the continuous micro-
scopic S„(E;I,e). I have also verified that the
area preserving -smoothing operations which lead
from Eg. (6) to Eg. (9) provide a function S„'"R
which is a reasonable interpolation of the discon-
tinuous function Sl by plotting Sz'" in Fig, 1 for
e = 0.01D = 0.1 keV using the values fox the &It
parameters found above Clearly S.„~R does in-
deed provide a reasonable interpolating function.

The areaunder every curve in Figs. 1 and 2 in-
tegrates to y~", so their shapes are directly com-
parable. The qualitative difference between the
Lane SF in Fig. 1 and that defined by Lorentz
averaging in Fig. 2 is apparent. The parameter
y~ can be found from the area under any curve,
but any attempt to fit the Lane SF in Fig. 2 to a
Lorentzian must lead to an incorrect value for
the spreading width I'~. In the central region the
Lane SF is more strongly peaked than a Lorentz-
ian. In the wings, i.e. , for I'sI«(E -E„)'+(I' /s
2)' I', the S„ follo-ws a Lorentzian, but of width
W = (I's' —4I')'I'. For the parameters used in Fig.
1 this width" in the wings has the imaginary val-
ue 8'= 36.1i keV I

Lane, Lynn, and Moses' have also suggested
using the (discontinuous) accumulating strength

2

6 g &Ey&E

to determine the IAR parameters. Assuming this
to be the integral of a Lorentzian, Bilpuch et al. '
and Mitchell' find more stable values for the IAR
parameters from fits to this function than from
fits to the strength function. This result seems
surprising in light of the above results. It can be
shown, however, that the accumulating strength
is not equal to the integral of the (non-Lorentz-
ian) Lane strength function, Sz, as these authors
assumed. Nevertheless, when the above area-
preserving smoothing procedure is applied to the
accumulating strength the resulting continuous
function is equal to the indefinite integral of the
Lorentzian strength function S(E;I) for I= e. It
follows and can be shown explicitly that the para-
metric dependence of the smoothed accumulating
strength is therefore equal to the indefinite inte-
gral of the Lorentzian S'" (E;I= e)." This sur-
prising result explains the success of Bilpuch et
a/. , in using the accumulating strength to obtain
IAR parameters' despite their assumption of an
incorrect form for the Lane SF.
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We formulate an extended time-dependent Hartree-Fock approximation which includes
particle collisions. As the configuration-space analog of the quantum Boltzmann equa-
tion, it can be utilized to study the dynamics of nuclear or other fermion systems when
irreversible dissipation is present.

Recent renewed interest in the time-dependent
Hartree-Fock approximation (TDHF) for the mi-
croscopic description of the dynamics of nuclear
systems was pioneered by Bonche, Koonin, and
Negele. ' Since then, many TDHF calculations
were carried out' and many different theoretical
investigations were initiated. "' However, in the
TDHF approximation, the fermions are assumed
to interact only through the mean field and the
collisions between particles due to residual inter-
actions are neglected. Because particle colli-
sions are capable of altering the occupation prob-
abilities and dissipating energies, the pattern of
behavior of the quantum fluid can be that of hydro-
dynamics or elastic response, ' depending on
the degree of particle collisions. A careful anal-
ysis of particle collision also helps our under-
standing of dissipative phenomena for which much
progress has been made recently. ' However,
the incorporation of particle collisions into the
TDHF approximation has, up to now, not been
formulated.

Previous extension of the TDHF approximation
was discussed in terms of a multideterminant
representation and Pauli's master equation. In
this Letter, we present a different extended time-

dependent Hartree-Foek approximation (ETDHF)
in which collisions between particles are explicit-
ly taken into account. The final set of equations
turns out to be simple and physically transparent
and may be of practical interest to those working
in the field of the dynamics of nuclear or other
fermion systems. Furthermore, concepts such
as entropy, temperature, thermal equilibrium,
and local equilibrium can be naturally and quan-
titatively introduced. The approach from non-
equilibrium to thermal equilibrium can be quan-
titatively studied,

Being the configuration-space analog of the
quantum Boltzmann equation, our set of equations
should retain certain characteristics of the Boltz-
mann equation. It should be closed Markovian in
the sense that all the quantities are to be speci-
fied at the same time coordinate. ' This require-
ment necessitates an integration over the colli-
sion history analytically. Just as in the Boltz-
mann equation, we wish to keep terms only up to
the second order in the residual interaction. Fi-
nally, as the Boltzmann equation violates time-
reversal invariance, the latter concept needs to
be properly introduced.

The starting point of our formulation is the
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