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y, is given exactly by

«.(y) =
(I-+y)(C +n. S)(A B. -S)

1+37) .(A . - By)

a. =
1 P (-Q /. mK. )' (16)

and

y. =-2a..1'j (1V)

In a recent study of 959 T events, ~ it was ob-
served that the deviations from "phase space"
of the distributions in T, and in T, were roughly
linear, with a~= 6.8+1.2, yT =-2.2~0.3, in fair
agreement with Eq. (1V) and hence with our neg-
lect of quadratic terms in Eq. (11). We then have

p7 -1.3, in agreement with our expectation that
the a (n, l) should be of comparable magnitude.
We predict p7, - -2.6. The intrinsic uncertainty
in this prediction, due to neglect of quadratic
terms in Eq. (11), is probably about 20%. By
careful study of existing 7 data, it should be
possible to estimate a (2, 0) and a7(2, 2) [for
example by checking (1V) more accurately] and
hence refine the accuracy of our prediction of
the w+ energy distribution in 7' decay.

Here we have A& =1 - 5j+qj, Bj=1+5j+2g. , and
C =1+36&+1}&,where (}T=0, 7}7.=Q~/6m„,
(},=(m -m, )/3m „7) =Q /6m„, .

It follows from Eq. (14) that the distribution
in unlike and like pion energies will be 1+a&Ta/mK
and 1+y~T, /mK, respectively [except for a phase-
space factor similar to Eq. (16)j, and that we
have
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HIGH-ENERGY LIMIT OF SCATTERING CROSS SECTIONS

lim o (E) =o (~),
@~op

o+(~) and o (~) being finite constants (or zero),
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Pomeranchuk' has shown that under rather etc.) at total energy E of the incoming particle
plausible assumptions concerning the very high in the laboratory system on a specific target,
energy dependence of total cross section —the and 1f

main one being that they behave almost as con- + +limo E =o
stants at infinity —the difference of the cross oo

sections for a particle and its charge conjugate
on the same target tends to vanish at infinity.
More explicitly: if o+(E) and o (E) are the total
cross sections for a particle and its charge con-
jugate (s+ -m, proton-antiproton, K+ -K, K'-Kc,
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then Pomeranchuk shows that

o (")=o ("). (2)

lim A (E)/E =constant
Q~oo

(3)

really is fulfilled. We note that by virtue of the
optical theorem the condition (3) on the imaginary
part of A+(E) is equivalent to (1); for the real
part, D (E, ), (3) implies

1im = constant.D E
(4)E

The property (2) is of importance for the appli-
cation of dispersion relations: in fact, in many
cases where the unsubtracted dispersion rela-

Pomeranchuk tries to justity (1) by pointing out
that due to the finite range of interaction between
particles, the quantity

A (E)/E,

where A (E) is the forward scattering amplitude
for the corresponding process averaged over-

possible spins, should go to a limit with increas-
ing E. Though it seems evident that the said
quantity is bounded, it is not clear that if it does
not go to zero it tends to a limit. But for Pom-
eranchuk's argument (1) it is essential that at
least the imaginary part has a limit. We shall
explore some consequences that can be drawn if
the condition

converge for t- ~. Even if (2) makes more plau-
sible the convergence of (5), it is by no means
sufficient: to ensure it, it would be necessary
to know how o - o+ goes to zero at very high
energies.

We note that if

lim [o (E) - o (E)] (1/lnE)
8

(6)

(behavior which in some cases has been interpreted
to be Pomeranchuk's prediction), then (5) would
diverge as lnlnt. In reference 1, however, no
discussion is made on how the limit (2) is reached.

We want to show that using the same starting
point as Pomeranchuk, something can be said
on how o - a+ goes to 0; in fact we show in this
note that the integral (5) is indeed convergent.

Let us start from the subtracted dispersion
relation whose convergence is guaranteed by (1):

tions for the difference of particle and antiparticle
amplitudes can converge because of the vanish-
ing of o+- a at very high energies. Such dis-
persion relations, subject to that hope, were
used and analyzed for several processes and
proved to give meaningful results. This is the
case for m -N S-wave scattering' (for the com-
bination n, —n, ) and for K Ns-cattering. ' In
order that those applications make any sense,
it is necessary and sufficient, however, that
integrals of the type

"t (E)-"(E)
dF

E) ( E) A P P' „(o+(E') a (E')) dE'
D (E) =,'I1+—ID (M)+,'I1-—ID (M)+Q +— I, +

where p = (E'+M')~', M being the mass of the particle in question and Q bAbp'/(E +Eh) the contribution
of possible poles (bound states at energies Eb), Ab being constants. The lowest limit of integration E,
depends on the process in question (possible existence of unphysical regions). We could start from the
dispersion relation for D (E) without changing the conclusions we shall reach.

Let us define

f(E) =o (E) -o'(E) (8)

then (7) can be rewritten

D (E) (1 1) (1 1) A (E -M /E)
=&I —+—ID (M)+,' —-—ID (M)+2;

( M2) 2 E o+(E ), ( M'& 1 f(E')
E I r(Eg2 Ez) I E I

& Es(Ei+E)
) '-E P
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The condition (4) is clearly satisfied by the terms
containing D (M) and the bound-state contribu-
tions on the right-hand side of (9). This is also
the case for the integral over v+: if in fact we
subdivide the integration at an energy e suffi-
ciently high so that for E'& e, o+(E') can be con-
sidered a constant, then its contribution for
E»e is essentially given by

2 E—,~(E ')dE ' --—o'(").
w E3~, P' mE

0

Then, if we call

lim EG(E) =constant.
oo

(12)

On the other hand, the following theorem on
Stieltj es transforms holds4:

Theorem: Let G(E) be the (convergent) integral
defined by (11) (E,& 0) and let

lim — E ' p(E ')dE ' = 0; (»)
E ~ F0

then

lim
~

EG(E) - ' y(E ')dE '
~

= 0.
)-E

0

(14)

The condition (13) is trivially satisfied in our
case because of (2) [although it is less restric-
tive than (2) since it implies only the existence
of limits (1) and (2) in the mean]. From (14)
and (12), the convergence of the integral

y(E 1)dE I
l

( ) ( ) dE I (15)
4 Ql "E

0 0

follows, as was to be demonstrated. '
As a consequence, we see that the limiting

behavior (6) is by no means compatible with the
constancy of cross sections at high energies,
i.e., the difference a (E) - o+(E) must go to zero
faster than 1/lnE.

We want to note, finally, that an immediate
consequence of our conclusion is that

where

lim 6(E) =0,
oo

a(E) =[D (E) -D (E))/E.

(16)

(17)

By using the unsubtracted dispersion relation

G(E)=, , with y(E) =f(E)/p, (11)E'+E
0

condition (4) implies that

for D (E) D-(E) whose validity we have just
discussed, we can write

B 2 ~ P'f(E')
b(E) =Q 2 R+—,2 2dE',

b

0

where B~ are the constant residua of the bound-
state contributions. Changing the integration
variable to F.", the integral of the right-hand
side of (18) is reduced to the form of a Hilbert
transform. Its convergence and the possibility
of inverting the Hilbert transform' are ensured
by the existence of (15). This means that the
expr ession

(18)
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~ a& g(E~)
EP2 g2

4

must converge for all values of E (and go to
zero for E-m), from which (16) follows.

An empirical discussion on the limit value for
6(E) was given by Goldberger et al. ' in connec-
tion with the possibility of using (18) as a sum
rule. Here instead we have shown, from rather
general theoretical ground, that (18) is valid
without subtraction constants and that, as a con-
sequence, the limit (16) holds.
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