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to . When M”?>B?+ u?, therefore, we have to
integrate along the solid curve shown. Note that
the integrand in (8) is an analytic function of ¢
in the relevant region, so that we are permitted
to deform the contour —we have already pointed
out that N(¢) has no cut along the positive real
axis.

We may now let the curves in Fig. 1 approach
the real axis. The difference between the value
of (15) on the two sides of the cut for #,<¢<4p?
is -2mi/p’q, so that (8) is replaced by
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A®(M, t), given by Eq. (8) if M2<B?+ 12 and by
Eq. (19) if M"?2> B?*+ 42, is thus an analytic func-
tion of M if t>4p% It might be thought that
there is a branch point when M’ =B?+ u2, but
this is not the case, as we would have obtained
exactly the same result had we given M'? a nega-
tive instead of a positive imaginary part. The
curves in Fig. 1 would then be reflected across
the real axis, but the sign change in the differ -

ence of the logarithm on the two sides of the cut
would be cancelled by the change of sign of ¢’
in the integrand of Eq. (8).

When M”?>B?+ 1%, we have seen that AP(M’, ¢t)
behaves like -27i/p’q at ¢ =0, so that ImA® (M, ¢')
is equal to -g*(M’")B(4u2) /167 u(M* - 1?)Y? instead
of zero at £=4p2. The cut in A® will extend to
the anomalous threshold at ¢ =¢,. By putting
M’ =M in (19) we obtain the result of physical
interest, with an anomalous threshold at ¢ =¢,.
The method of applying the unitarity condition
only above the physical threshold, but for vary-
ing masses, and then continuing analytically in
the masses, can thus handle both the normal
and anomalous cases. The extra cut in the ano-
malous case is a mathematical consequence of
the analytic continuation, and does not appear to
have any precise physical significance.
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NEW TEST FOR AI=1/2 IN K* DECAY"
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We wish to suggest a practicable test of the
AI=1/2 rule, based on a comparison of the pion-
energy distributions in 7+ and 7%’ decay. At
present, the only check of AI=1/2 in these proc-
esses is the successful prediction of the 7//7
branching ratio.! However, it is well known
that the branching ratio tells us that AI=5/2 and
AI="7/2 are absent but tells us almost nothing

 about the possible presence of AI=3/2 terms.
The only symmetric three-pion states have I=1
or /=3, and the other, nonsymmetric and hence
inhibited states with 7=1 or =2 (which could be
produced by a AI=3/2 term) cannot interfere with
the symmetric states in a measurement of decay
rates. It is of course very important to learn
whether the nonleptonic weak interactions involve
a mixture of AI=1/2 and AI=3/2. In particular,
it has been noted that such a mixture would re-

sult if these interactions arose from a folding of
a Al=1/2 strangeness-nonconserving current
with the usual AI=18-decay current.? From ex-
perience with the 7//7 ratio we see that a test
for AI=3/2 terms must depend on measurements
of pion asymmetries of some sort.?

Suppose we let A (T,T,T,) and A (T,T,T;) be
the Lorentz-invariant amplitudes for K* decay
into 7*r*nr~ or %% with kinetic energies T,
T,, and T, respectively. The Bose statistics of
pions implies that

Aj(TlTZTS)—Aj(TleTa) (1)
for j=7 or 7’. We shall break up A]- into sym-
metric and nonsymmetric parts:

N

S
Aj(T1T2T3)-Aj (T1T2T3)+Aj (T,T,T,), (2)
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Ajs(TszTs) =44 (T, )Ty +A (14T, T))

+A (T, T T)) ()
A],N(TITZTS) = ${24 (1 T, Tg) -4 (T T\ T)

-4 (1,17 @)

Now, the six amplitudes corresponding to 37
states with definite total I can be expressed as
linear combinations of the six amplitudes ob-
tained by permuting the arguments of A; and Az,
When we set the I =2 amplitudes equal to zero,
we obtain

A=A 7. (5)

Also, by setting the I =3 amplitude equal to zero,
we have

aS-a S (6)
T T
Hence we see from Egs. (2), (5), and (6) that,
under the AI=1/2 rule, the energy dependence
of the 7/ matrix element is entirely determined

by the behavior of the matrix element for 7 decay.

The presence of AI=3/2 terms would invalidate
Eq. (5), though not Eq. (6).

To make this result more concrete, let us use
the coordinates of the Dalitz-Fabri plot,*

x=psing =V3(T, - T,)/Q,
y=pcosp=(3T;-Q)/@Q, (7

where we have @=T,+T,+T,. We shall expand
A in the series

Q. \n
=7 _J\
Aj(T1T2T3) —n’laj(n, l)(mK) p coslo, (8)

where a(n,1) =0 unless n - [ is even and non-nega-
tive. [Equation (8) may be justified by performing
a multipole expansion of A, which will yield a
power series in |B, |2, 15,12, |B,|2. Since we
have |P1%2=2mT +T?, this can be rewritten as a
power series in T, T,, and T,;, and hence in

Qx and Qy. Since, according to Eq. (1), we can-
not have terms odd in x, this power series can
be written as the cosine series of Eq. (8).]

It may easily be seen that the terms in Eq. (8)
with 1=0,3,6,9,... are completely symmetric
and belong to AS, while the others belong to AN,
Thus, according to Egs. (5) and (6), we obtain

a_n,D)=a_,n, 1) (9)
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for 1=1,2,4,5,7,8,---, and
aT(n, l)=-2aT,(n, 1) (10)

for [=0,3,6,9,---. These equations are ex-
pected to be correct up to Coulomb and mass-
shift corrections of a few percent.’ Since the
aj(n, 1) are only slowly varying functions of €,
the 12 % difference between @; and @, will also
not alter Egs. (9) and (10) by more than a few
percent at most, though it will have a very large
effect on the total available phase space.

In principle, for each (n,1), Eq. (9) or (10) can
serve as a test of the presence of AI=3/2, 5/2
terms or of AI=5/2, 7/2 terms. There is one
case, however, for which Egs. (9) and (10) can
be tested by merely observing T, in a reasonable
number of 7 and 7’ events, without having to
measure any neutral pion energies. We expect
theoretically that all of the aj(n, 1) should be
roghly comparable in magnitude. |[Very strong
final-state interactions might give rise to some
factors of (my/mg)", but this seems unlikely. ]
Since Qj/""K is small, we can try neglecting all
terms in {A ;|2 except for [a;(0, 0)|% and the in-
terference between aj(O, 0) and aj(l, 1). We then
have

Q 2
lAj(T1T2T3) |2 ~ Gjl:l +ﬁ].(Q],/mK)y + O(;nj;ﬂ , (11)

where

v.=1a (0,012, 12
G] a]( ) (12a)

and

Bj=2Re[aj(1, 1)/aj(0,0)]. (12b)

If we apply Egs. (9) and (10) to Egs. (12) and (13),
we obtain the familiar result @,,=@Q; /4, and the
new prediction that

BT,=—2BT- (13)

(It is of course helpful experimentally that 18,1
is twice I18,1.) To calculate rates from Eq. (11),
we must multiply by the relativistic phase-space
density, which is conveniently a constant for
both 7 and 7/ decays, and integrate over unob-
served energies. We then obtain the differential
decay probability

wj(y)dy ~[1 +ﬁj(Qj/mK)y1xj(y)dy, (14)

where xj(y), the maximum value of x for a given



VOLUME 4, NUMBER 2

PHYSICAL REVIEW LETTERS

JANUARY 15, 1960

Y, is given exactly by

x].(y) =[

Here we have A; =1 - 6]-+17]-, Bj=1+6j+2n]-, and
Cj =1+ 36]- +7j, where 67 =0, 77 = Q. /6my,
OTI =(m.n- - m.,,-o)/3m1;o, 77—,—' = QTI/Gm,”o-

1t follows from Eq. (14) that the distribution
in unlike and like pion energies will be 1 +a;T;/mg
and 1 +7jT1/mK, respectively [except for a phase-
space factor similar to Eq. (15)], and that we
have

_ vz
(1 +y)(Cj+n]y)(A]. B]y)] . 5)
1+ 3"j(Aj - B]y)

38,
TR " e
77K
and
=-1q. 17
7= 19, 7

In a recent study of 959 7 events,® it was ob-
served that the deviations from “phase space”
of the distributions in T, and in T, were roughly
linear, with a_ = 6.8+1.2, y;=-2.220.3, in fair
agreement with Eq. (17) and hence with our neg-
lect of quadratic terms in Eq. (11). We then have
Bt ~1.3, in agreement with our expectation that
the a;(n,l) should be of comparable magnitude.
We predict g,,~-2.6. The intrinsic uncertainty
in this prediction, due to neglect of quadratic
terms in Eq. (11), is probably about 20%. By
careful study of existing 7 data, it should be
possible to estimate a_(2,0) and a,(2,2) [for
example by checking (17) more accurately] and
hence refine the accuracy of our prediction of
the 7+ energy distribution in 7’ decay.’
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HIGH-ENERGY LIMIT OF SCATTERING CROSS SECTIONS
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Pomeranchuk® has shown that under rather
plausible assumptions concerning the very high
energy dependence of total cross section—the
main one being that they behave almost as con-
stants at infinity —the difference of the cross
sections for a particle and its charge conjugate
on the same target tends to vanish at infinity.
More explicitly: if o*(E) and o~(E) are the total
cross sections for a particle and its charge con-
jugate (r+-7~, proton-antiproton, K* -K~, K° - K°,

etc.) at total energy E of the incoming particle
in the laboratory system on a specific target,
and if

lim o+(E) =0+(°°),
E—ow

lim o (E)=0 (=),
E—o

1)

o*(«) and ¢-(«) being finite constants (or zero),
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