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to . When M' )B + p. , therefpre, we have tp
integrate along the solid curve shown. Note that
the integrand in (8) is an analytic function of t
in the relevant region, so that we are permitted
to deform the contour —we have already pointed
out that N(t) has no cut along the positive real
axis.

We may now let the curves in Fig. 1 approach
the real axis. The difference between the value
of (15) on the two sides of the cut for t, &t&4y.'
is -2mi/p'p, so that (8) is replaced by
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4gD(t)~ I
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A' i(M', t), given by Eq. (8) if M" & B'+ p' and by
Eq. (19) if M" &B'+ p', is thus an analytic «nc-
tipn pf M' if t)4p, . It might be thpught that
there is a branch point when M' =B + p, but
this is not the case, as we would have obtained
exactly the same result had we given M" a nega-
tive instead of a positive imaginary part. The
curves in Fig. 1 would then be reflected across
the real axis, but the sign change in the differ-

ence of the logarithm on the two sides of the cut
would be cancelled by the change of sign of q'
in the integrand of Eq. (8).

When M" & B'+ p', we have seen that A"'(M', t)
behaves like -2mi/p'q at q =0, so that ImA'"(M', t')
is equal to g-(M')B(4p')/16gp(M" - p')"' instead
of zero at t =4p, . The cut in A"' will extend to
the anomalous threshold at t =t,. By putting
M' =M in (19) we obtain the result of physical
interest, with an anomalous threshold at t = ty.
The method of applying the unitarity condition
only above the physical threshold, but for vary-
ing masses, and then continuing analytically in
the masses, can thus handle both the normal
and anomalous cases. The extra cut in the ano-
malous case is a mathematical-consequence of
the analytic continuation, and does not appear to
have any precise physical significance.
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We wish to suggest a practicable test of the
EI =1/2 rule, based on a comparison of the pion-
energy distributions in 7+ and v+' decay. At .

present, the only check of bI =1/2 in these proc-
esses is the successful prediction of the T'/~
branching ratio. ' However, it is well known
that the branching ratio tells us that LI = 5/2 and
4I = 7/2 are absent but tells us almost nothing
about the possible presence of ~I=3/2 terms.
The only symmetric three-pion states have I= 1
or I=3, and the other, nonsymmetric and hence
inhibited states with I= 1 or I=2 (which could be
produced by a bI =3/2 term) cannot interfere with
the symmetric states in a measurement of decay
rates. It is of course very important to learn
whether the nonleptonic weak interactions involve
a mixture of M=1/2 and LA=3/2. In particular,
it has been noted that such a mixture would re-

suit if these interactions arose from a folding of
a M= 1/2 strangeness-nonconserving current
with the usual dd =1p-decay current. ' From ex-
perience with the r'/v ratio we see that a test
for M= 3/2 terms must depend on measurements
of pion asymmetries of some sort. '

Suppose we let AT(T, T,T,) and AT i(T,T,T,) be
the Lorentz-invariant amplitudes for R+ decay
into n+m+n or n'7t'm+ with kinetic energies T„
T„and T„respectively. The Bose statistics of
pions implies that

A.(T T T )=A.(T T T )

for j=T or 7'. We shall break up A into sym-
metric and nonsymmetric parts:

A.(T T T ) =A. (T T T )+A (T T T ), . (2)
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A (.T T T ) =- 3[A.(T T T )+A.(T T T )

Now, the six amplitudes corresponding to 3m

states with definite total I can be expressed as
linear combinations of the six amplitudes ob-
tained by permuting the arguments of AT and AT I.
When we set the I=2 amplitudes equal to zero,
we obtain

N N

T Tl (5)

Also, by setting the I=3 amplitude equal to zero,
we have

S S
T Tf' (6)

Hence we see from Eqs. (2), (5), and (6) that,
under the BI=1/2 rule, the energy dependence
of the 7' matrix element is entirely determined
by the behavior of the matrix element for 7 decay.
The presence of bI =3/2 terms would invalidate
Eq. (5), though not Eq. (6).

To make this result more concrete, let us use
the coordinates of the Dalitz-Fabri plot, '

+A (T .T T )], (3)
2 3 1

A (T. T T ) =- ~i[2A (T T. T ) -A (T .T T )

-A.(T T T )], (4)231'

for l = 1, 2, 4, 5, 7, 8, ~ ~ ~, and

a (n, l) =-2a, (n, l)

for l = 0, 3, 6, 9, ~ ~ ~ . These equations are ex-
pected to be correct up to Coulomb and mass-
shift corrections of a few percent. ' Since the
aj(n, l) are only slowly varying functions of Qj,
the 12 /g difference between QY and QYi will also
not alter Eqs. (9) and (10) by more than a few
percent at most, though it will have a very large
effect on the total available phase space.

In principle, for each (n, l), Eq. (9) or (10) can
serve as a test of the presence of AI=3/2, 5/2
terms or of AI=5/2, 7/2 terms. There is one
case, however, for which Eqs. (9) and (10) can
be tested by merely observing T, in a reasonable
number of 7 and T'' events, without having to
measure any neutral pion energies. We expect
theoretically that all of the aj(n, l) should be
roghly comparable in magnit~ude. [Very strong
final-state interactions might gi.ve rise to some
factors of (mv/m&)n, but this seems unlikely. ]
Since Qj/m& is small, we can try neglecting all
terms in IA I' except for !aj(0, 0) I' and the in-
terference between a (0, 0) and aj(l, 1). We then
have

IA.(T T T ) I'=1i. 1+p.(Q./m )y+Oi, ~, (11)j123jjjK(m
x -=p sing = 43(T, - T,)/-Q,

y =—pcosg =-(3T, —Q)/Q,

where we have Q=—T, +T, +T,. We shall expand
A in the series

where

ci. = Ia.(0, 0) I',

p . =
2Re [a.(1, 1)/a. (0,0)].

(12a)

(12b)

A.(TIT2T3) = Q a.(n, l)i i p coslg,
t' ji" n

Pz&
(8)

where a(n, l) = 0 unless n —l is even and non-nega-
tive. [Equation (8) may be justified by performing
a multipole expansion of A, which will yield a
power series in I P, I', I P, I', I P, I'. Since we
have I P I' = 2ynT+ T, this can be rewritten as a
power series in T„T„and T„and hence in

Qx and Qy. Since, according to Eq. (1), we can-
not have terms odd in x, this power series can
be written as the cosine series of Eq. (8).]

It may easily be seen that the terms in Eq. (8)
with l = 0, 3, 6, 9, . . . are completely symmetric
and belong to A, while the others belong to AN

Thus, according to Eqs. (5) and (6), we obtain

(It is of course helpful experimentally that IP~ i I

is twice IP~ I.) To calculate rates from Eq. (11),
we must multiply by the relativistic phase-space
density, which is conveniently a constant for
both T and T' decays, and integrate over unob-
served energies. We then obtain the differential
decay probability

&u.(y)dy -[1+p.(Q./m )y]x.(y)dy, (14)

If we apply Eqs. (9) and (10) to Eqs. (12) and (13),
we obtain the familiar result 87 i =Q~/4, and the
new prediction that

(13)

a (n, l) =a, (n, l) (9) where xj(y), the maximum value of x for a given

88
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y, is given exactly by

«.(y) =
(I-+y)(C +n. S)(A B. -S)

1+37) .(A . - By)

a. =
1 P (-Q /. mK. )' (16)

and

y. =-2a..1'j (1V)

In a recent study of 959 T events, ~ it was ob-
served that the deviations from "phase space"
of the distributions in T, and in T, were roughly
linear, with a~= 6.8+1.2, yT =-2.2~0.3, in fair
agreement with Eq. (1V) and hence with our neg-
lect of quadratic terms in Eq. (11). We then have

p7 -1.3, in agreement with our expectation that
the a (n, l) should be of comparable magnitude.
We predict p7, - -2.6. The intrinsic uncertainty
in this prediction, due to neglect of quadratic
terms in Eq. (11), is probably about 20%. By
careful study of existing 7 data, it should be
possible to estimate a (2, 0) and a7(2, 2) [for
example by checking (1V) more accurately] and
hence refine the accuracy of our prediction of
the w+ energy distribution in 7' decay.

Here we have A& =1 - 5j+qj, Bj=1+5j+2g. , and
C =1+36&+1}&,where (}T=0, 7}7.=Q~/6m„,
(},=(m -m, )/3m „7) =Q /6m„, .

It follows from Eq. (14) that the distribution
in unlike and like pion energies will be 1+a&Ta/mK
and 1+y~T, /mK, respectively [except for a phase-
space factor similar to Eq. (16)j, and that we
have
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HIGH-ENERGY LIMIT OF SCATTERING CROSS SECTIONS

lim o (E) =o (~),
@~op

o+(~) and o (~) being finite constants (or zero),
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Pomeranchuk' has shown that under rather etc.) at total energy E of the incoming particle
plausible assumptions concerning the very high in the laboratory system on a specific target,
energy dependence of total cross section —the and 1f

main one being that they behave almost as con- + +limo E =o
stants at infinity —the difference of the cross oo

sections for a particle and its charge conjugate
on the same target tends to vanish at infinity.
More explicitly: if o+(E) and o (E) are the total
cross sections for a particle and its charge con-
jugate (s+ -m, proton-antiproton, K+ -K, K'-Kc,
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