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SIt is of considerable importance that the discrepancy
between the C~2(He~, n)Oi4 threshold measurements of
references 4 and 5 be resolved. In the present paper,
we will use the Ot4(P+)Ni~ end-point kinetic energy of
1800 + 6.5 kev calculated from the threshold value of
reference 5.
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We are indebted to Professor R. H. Dalitz for

pointing out to us that the results of the perturbation
theory calculations for the muon are ambiguous to the
extent that one is at liberty to regularize in different
ways the muon and electron self-energy graphs and the
vertex graphs, thereby adding finite constant terms to

the decay amplitude. The choice of reference 2 cor-
responds to regularizing only the photon propagators.

~To lowest order in e, a consistent treatment of the
decay accompanied by inner bremsstrahlung yields
results identical with those of perturbation theory,
with the usual weak-coupling constant G replaced by
Ra(s„~).

~The factor ~2 is introduced to conform to the no-
tation for G of reference 1.
tiM. Morita, Phys. Rev. 113, 1584 (1959).
t2The failure to obtain a finite result for A(s) when

the electromagnetic form factor is included in the
calculation of ImA(s) contradicts previous conjectures
(see the first two papers of reference 2). We remark,
however, that the form factor is necessary and suffi-
cient to secure convergence in the integral for B(s}
and in the contributions to the neutron decay amplitude
involving interactions of the electron with the anomalous
magnetic moments of the nucleons. These form-factor-
dependent terms do not contribute significantly to the
corresponding decay rates.

A term in the total electromagnetic correction of
the form -Znz/ee is identified in the usual manner
with the term of order Zo. in the expansion of the Fermi
factor for the positron decay, and is omitted from the
corrections designated as radiative.
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Recent studies of the analytic continuations of
perturbation theory amplitudes have led to a
greatly increased understanding of their proper-
ties. ' ' Landau showed the existence of a class
of singularities which are a generalization of the
ordinary thresholds for the onset of new physical
processes. He derived two conditions for deter-
mining the location of these singularities: (1)
Each of the intermediate particles (which cor-
respond to lines joining otherwise disjunct sub-
graphs of the original Feynman graph) is on the
mass shell. (2) The four-momenta of these in-
termediate particles satisfy a geometrical rela-
tion which generalizes the requirement, for the
ordinary thresholds, that the intermediate par-
ticles all be at rest in the center-of-mass frame.

Applications of dispersion relations have all
made use of the fact that the discontinuity across
a branch cut starting from an ordinary physical
threshold is obtained from the unitarity condi-
tion. It has been shown, for all finite order
graphs, that a generalized unitarity relation

gives the discontinuity across a branch cut which
starts from any Landau singularity. " In this note
we point out, by means of some simple examples,
that this generalized unitarity relation greatly
augments the power of analytic continuation
methods.

The rule for calculating the discontinuity of a
graph is that in the integral over the virtual
four-momenta, for each line of the "reduced
graph" which determines the singularity the fac-
tor (MI —q*) ' is replaced by 2wi(}(qI -Mz). In
other words, the subgraphs which comprise the
vertices of the reduced graph are considered
only for the case that the lines leading into them
represent free particles. The products of the
factors 5(q' -M') and d'k for the reduced graph
are analogous to phase space volume elements.

Certain reduced graphs lead to poles rather
than branch points; in these cases the residue is
obtained by considering the lines to be on the
mass shell. The poles discussed by Chew and
Low'~ are simple examples.
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The Landau singularities are, in fact, all the
singularities of a finite order graph, apart, from.
trivial exceptional branch points that may occur
on secondary Riemann sheets. " Since the dis-
continuities and residues of a given graph are
expressible in terms of lower order graphs, the
generalized unitarity relation can be used to gen-
erate the perturbation series expansion, when it
is supplemented by appropriate assumptions
about the number of necessary subtractions. "
Therefore, the generalized unitarity relation
may be considered to embody the entire content
of a, convergent perturbation expansion.

As a first illustration, we consider the anom-
alous threshold of the reaction m+ m-Z + Z, which
has already been discussed by Mandelstam. '4 All
graphs which possess the anomalous threshold in
question have the structure shown in Fig. 1(a).
The circles stand for any graphs which contri-
bute to the (wZA) vertex, or to w - w scattering.
When we sum over all graphs which contribute
to the discontinuity above the anomalous thresh-
old, these become the renormalized coupling con-
stant and the elastic scattering amplitude. %e
follow Mandelstam and treat the particles as
spinless and chargeless; the discontinuity of
T &(E, cos&) is then

[T &S,coos)]=(mo ')g'f d%7' ]E, oooo')

x~(q ' I')~(q -*-M ')~(q '-I '), (1)+ w - m 0 A

where q+= ,'P+k and -qo=p& -k (we denote by P
the total four-momentum, and by 2p& the differ-
ence of the four-momenta of the Z" s). If we ex-
pand in partial waves, we obtain

Here x, the cosine of the angle between the Z and
the intermediate w, is given by M&'+Pw +P&'
=2p„p&x. At the anomalous threshold, x =1; as
E increases to 2M, x-+ ~. Equation (2) for I =0
corresponds to Mandelstam's result, but it is
here shown to include the contribution of a,ll or-
ders of perturbation theory.

The electrom~etic form factor of the deuteron
has a first threshold corresponding to the reduced
diagram lg). ' When all graphs are summed, the
circles correspond to the asymptotic Bethe-
Salpeter amplitude and to the nucleon form factor.
Integration leads to the usual zero-range poten-
tia, l result, with some relativistic corrections.
The next threshold corresponds to graph l(c),
which has an intermediate pion. The pion produc-
tion vertex has two nucleon pole terms, which ap-
pear to be dominant. It follows from a theorem
proved in reference lk that in calculating the
discontinuity associated with the reduced graph
1(c), these poles never lie in the region of inte-
gration, but they are actually quite close to the
edge. The pole terms can be interpreted as the
lowest order correction to the wave function
arising from the finite range of the force. The
remainder of the pion production vertex gives a
"nonadditivity" correction.

The technique described above can also be used
to calculate, and to give a physical interpreta-
tion to, the Mandelstam spectral functions. These
correspond to a division of a graph into four (or
more) disjunct parts, with each external line
being attached to a separate part. Consider first
the reduced nucleon-nucleon scattering graph
2(a). The corresponding Mandelstam spectral
function is just the renormalized fourth order
perturbation theory result. '~ '

Another reduced two-meson exchange graph is
shown in Fig. 2(b). When all contributing Feyn-

(c)

FIG. 1. Reduced graphs corresponding to some
anomalous thresholds.

FIG. 2. Reduced graphs corresponding to some
Mandelstam spectral thresholds for nucleon-nu. cleon
scattering. The solid lines represent nucleon:~, and
the dashed lines represent pions.
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man graphs are summed, one of the circles be-
comes the meson-nucleon scattering amplitude;
by paying careful attention to the branch onto
which the amplitude is continued, it can be seen
that the other upper circle is the conjugate am-
plitude. Hence we find, for 2(b),

p(s, t) = (mw() 'f d'k, d'k, g*(&.p —M) 5,... ll,

(sI t~) T (si tu)

where 5,...5, are the delta functions associated
with the five lines of the reduced graph, I' is the
momentum of the intermediate nucleon in the
lower part of the graph, ands'= (q4+q, )' is the
energy variable of the meson-nucleon scattering.
I et us introduce a dummy integration of the form
f&(s'- (q, +q,)')ds'. For s' below the meson pro-
duction threshold, we find by analytically contin-
uing the ordinary unitarity relation, that

(2mi)

Hence

xg (y P -M) ImT (s', t). (5)

s'& (M~+ 2M~)'. Graph 2(c) may be analyzed by
the same method and leads to a result similar to
(6), except that the imaginary part of a meson
scattering matrix is associated with each nu-
cleon. The crossed reduced graphs may be ob-
tained from crossing symmetry.

Vfe see that the contribution of all two-meson
exchange graphs to the Mandelstam spectral
functions can be written down in terms of the
meson-nucleon scattering amplitude. It is clear,
in particular, that meson-meson interactions do
not contribute to nucleon-nucleon scattering and
to meson-nucleon scattering in fundamentally
different ways. Of course, it is unlikely that
Imr &(s', t) in the spectral region can be ob-
tained from the experimental values by a model-
independent extrapolation.

It should be noted that there are some Feynman
graphs, involving the X(t) term in the Lagrangian,
which do not contribute to the spectral functions.
If a subtracted form of the Mandelstam represen-
tation is used, these terms are absorbed.

The cases (such as Z - Z scattering) in which
the Mandelstam representation is invalid are not
greatly different from nucleon-nucleon scatter-
ing; there are spectral functions determinable
in terms of simpler processes, but they must be
integrated over complex surfaces.

The integration over d~k, is now identical to that
which occurs in fourth order perturbation theory, "
and leads to

p(s, t) =g' ds'(y. P - M) ImT(s', t)/V(s, t, s'). (6)
So

The denominator V is proportional to the volume
of a certain four-dimensional figure. The s in-
tegration goes between the limits s, = (M&+M )'
and a maximum s, determined by the equation
V(s, t, s,) =0.

If we consider also the reduced graphs with
two or more mesons (or other particles) passing
between the upper circles in graph 2(b), we find,
by using the unitarity condition for the inelastic
scattering situation, that these graphs give such
a contribution that E(l. (6) is also correct for
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