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In a recent Letter, Overhauser® proposed that
the description of the ground state of nuclear
matter start with spatially periodic Hartree-
Fock functions. The periodic state has been
proposed in other many-body problems, and may
occur widely in nature. Examples that have been
worked out in some detail are Vlasov’s classical
theory of “solids, 2 Fréhlich’s one-dimensional
model of superconductivity,® and the author’s
theory of interacting bosons.* The physical idea
of these theories is that when attractive inter-
actions outweigh repulsions at a characteristic
distance, the system may pay the cost in kinetic
energy to establish space periodicity. Except
for close collisions, a particle moves freely
through the entire volume of the system, in
contrast to the localization in a solid state. Yet
there is long-range order involving a self-con-
sistent density variation. This Letter first
reports a general method to describe systems
in which the periodic state forms the correct
starting point. It enables one to determine the
excitations and thermodynamic properties, as
well as to calculate modifications of the self-
consistent field produced by close collisions.
Second, we note some qualitative and unusual
features of such periodic states. These have
been studied in some detail in I and II for bosons.
Since the present approach embraces both
fermions and bosons, the features are general
possibilities. Because of the difficulties of
making quantitative predictions in many-body
theory, the qualitative ideas suggest a general

search for experimental evidence for the features.

Consider, for simplicity, spinless bosons or
fermions, described by a quantized field $(X)
=27¢a;¢4(X). The @g(X) form a complete set of
one-body functions; we are mainly concerned
with a plane wave basis or a set of solutions to
a periodic potential problem in extended zone
correspondence with the plane waves. The basic
units are the operators c(T |1/ =af7af,, i.e.,
components of the density matrix p(X, ) = ¢ TX)y(¥).
They obey the commutation rules

[e(T11), c(glg)]
=c(flg')6f,’ " c(glf)d

f,g"’
for both Bose and Fermi systems. The Hamil-
tonian is

H=Y T(tig)c(tig)
f,g
+ 2
f’ g’ f” g,

v(Tel T'g)c,(Tgl T,

with
7(t13) = (2 /2M)f Vo' vo &,
v(fzsitg)
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g’

¢, can be broken into products of ¢ operators.
The c(fl f’) thus form a complete description.
The elementary Hartree theory consists in
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assigning values to the number operators

c(f I’f), neglecting off-diagonal elements and
contributions of ¢(T11’) with T/#1. The choice
c(010) =N, (T IT)=0for T#0 yields the semi-
classical boson theory of I. c(11) =1 for 1T
less than the wave vector in correspondence with
the Fermi momentum, for fermions leads, for
example, to Overhauser’s ground state for nu-
clear matter. One obtains a set of equations for
(pf(i) by functionally varying the energy with
respect to (p{"()’(). The plane wave basis makes
the energy stationary, but when attractive forces
are vital, a spatially periodic basis yields a
minimum energy.

It is important that there are other periodic
solutions of the Hartree equations (different
lengths or symmetries) of higher energy than
the lowest solution, but lower in energy than the
plane wave solutions. As discussed in II, the
various periodic states are mutually orthogonal
as N - . They have a different energy per
particle and so determine the properties at a
finite temperature. In fact, the correlation
function should be periodic at absolute zero and
lose the long-range order, as the temperature
is raised, because of admixture of other periodi-
cities.

To describe the low-lying excitations, one
linearizes the equations of motion for c('fl’f') by
breaking down cz(?éIT’é’) and retaining only
terms containing one number operator. This is
a “random phase” approximation, but it is im-
portant that it is basis dependent. We obtain a
set of linear equations for c(?l?'), an associated
excitation spectrum, and a lowering of the
ground-state energy from the zero-point shift
of the excitations. When one uses a plane wave
basis, the resulting theory includes Bogolyubov’s

theory of bosons and Sawada’s theory of fermions.

For periodic bases there are new results, most
importantly, gaps in the excitation spectra at
absolute zero. With rising temperature the
other periodic solutions, with gaps in their ex-
citation spectra at different places, come into
play. The observed gaps should therefore narrow
and ultimately disappear. This effect should be
looked for, e.g., by studying inelastic neutron
scattering at very low temperatures in liquid
helium.

To include the effects of close collisions, c,
is left unaltered in the equation of motion of c.
One writes an equation for the time dependence
of ¢,. This involves cs(’féﬁl‘f'é’ﬁ'), which is
broken to a sum of products of ¢, and ¢. Terms
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containing vacuum expectation values of either
of the operators are retained. Elimination of

¢, leads to a new, consistent field as modified
by collisions. The above scheme is in the spirit
of much recent work in many-body theory. The
main point of difference is the recognition of the
importance of a non-plane-wave basis even in
absence of external fields.

One objects immediately that this violates the
translational invariance of the Hamiltonian. For
every basis gaf(i), we get a corresponding theory
for a basis ¢(X+€), where € is any real vector.
This point has been studied in II. There, a
formalism involving linear combinations of cre-
ation and annihilation operators was used. A
translationally invariant ground state is con-
structed by superposing wave functions for dif-
ferent €. The ground-state energy per particle
is unaltered as N - «». Corresponding results
are obtained for fermions using Bogolyubov’s
variational method.®

A second point is that the periodic state is not
a solid. The solid* is described by using a set
of <pf(?c), localized at different points in space,
and can be treated in the above scheme. A check
is obtained by examining the excitation spectrum
for long waves. The solid has transverse branches
in contrast to the periodic state under considera-
tion. By rewriting the theory in terms of the
Wigner distribution, one can show that Vlasov’s
theory® is not a theory of a solid. It is interesting
that the solid also has periodic solutions with
different periodicities from the one realized at
absolute zero. In accordance with the above
ideas, these solutions are to be used in the
theory of the thermal expansion, for example,
of solid He®.

The above scheme has been used by the author
and Vail® to extend Frohlich’s one-dimensional
model of superconductivity. To Frohlich’s
consideration of the static self-consistent state
one adds the dynamical interactions of electrons
and lattice. This extends the validity of his
theory to more reasonable coupling strengths.
Frohlich places the wave vector of the periodicity
at twice the Fermi momentum. In three dimen-
sions it is not likely that one can gain energy
with such a small periodicity because of the
irregular shape of the Fermi surface. But the
possibility of a range of long-wavelength periodici-
ties has not been sufficiently explored. This leads
back to earlier, abortive theories of supercon-
ductivity referred to by Bardeen.” Even if the
self-consistent superlattice concept is com-
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pletely irrelevant to superconductivity, it may

be needed in other solid state problems. In
particular, Slater® has used the idea in an inter-
esting way to give a qualitative explanation of a
number of anomalous effects. The self-consistent
periodic state is such a general notion that ex-
perimental investigation, further exploration of
its limitations, or perhaps theoretical refutation
seems to be called for.

*Work supported by the Office of Scientific Research,
U. S. Air Force.
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The Brueckner -Goldstone! or linked cluster
expansion for the ground-state energy of a many-
fermion system has recently been criticized by
Kohn and Luttinger? and Luttinger and Ward,?
who have shown by using statistical mechanics,
that the formula obtained starting from a spheri-
cal unperturbed state is correct, in general,
only for systems with complete spherical sym-
metry. It is the purpose of this note to exhibit
a generalized linked cluster expansion applicable
also to situations lacking such symmetry.

To illustrate our viewpoint, we consider for
simplicity a system of spinless fermions inter -
acting via two-body forces as described by the
Hamiltonian

H=H,+H,
=Z)§aT(§)a(§)p2
Y Fro i Tror o o yon
*39 . 2 a B+@a @ -9a®)a®l@), (1)

p,0, 4
where p? is the kinetic energy of a free particle,
© is the volume of the system, and the potential
v(q) is assumed not to be spherically symmetric.
As is customary, we shall be interested in a
system of N particles in the limit in which N
and Q - «, but, of course, p=(N/Q) remains
fixed and finite.

It is first essential to inquire about which ele-
ment of the Goldstone proof can fail in the pres-

ent situation. Putting aside questions of con-
vergence, direct examination shows that the
formal derivation can fail only if we start the
adiabatic switching-on process with an unper-
turbed state which is orthogonal to the actual
ground state. The procedure described below is
designed specifically to avoid this dilemma and
to yield a series which should represent the
lowest normal state.

Let M(D, p,, p) be the proper self-energy
operator® for a single fermion of four -momen-
tum (P, p,) moving through the medium at den-
sity p. For a normal system, the minimum
single-particle excitation energy is required to
coincide with the chemical potential, u, and to
be the unique real solution of the equation®

u=p* - M(P, u; p). (2)

Since in our present example M depends on the
direction of P, for given u, the real solutions
p=PF of Eq. (2) define a surface in p space,

I =e(§F), the perturbed Fermi surface. It is
essential for our further considerations to sup-
pose that p is itself a single-valued functional
of this surface. We may thus write

€(®) =p° - M(, €(®), p[B])
=p*+0(p), @)

where we have dropped the subscript F to
emphasize that we now wish to consider the
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