ERRATA

NEW TEST FOR $\Delta I = \frac{1}{2}$ IN K^+ DECAY. Steven Weinberg [Phys. Rev. Letters 4, 87 (1960)].

It was incorrectly stated in Eq. (17) that the parameters a_j and γ_j characterizing the energy distribution of the unlike and like pions in τ or τ' decay are related, as a consequence of Eq. (14), by $\gamma_j = -a_j/2$. Dr. R. G. Glasser has kindly informed me that the relation should read

$$\gamma_j = \frac{-a_j}{2 + a_j Q_j / m_K}, \qquad (17)'$$

and that use of this correct result brings theory and experiment into remarkable accord. [Equation (17)' holds strictly only for $j = \tau$.] The experimental value (reference 6) of γ_{τ} is -2.2±0.3, which may be converted using (17)' into an equivalent $a_{\tau} = 6.6 \pm 0.9$, whereas the directly measured value is $a_{\tau} = 6.8 \pm 1.2$. This close agreement indicates that Eq. (14) is an excellent approximation, all departures from a phase space distribution being accounted for by the linear factor $1 + \beta Qy/m_K$, and hence that the τ' spectrum may be predicted with confidence. From the above values of a_{τ} we obtain $\beta_{\tau} = 1.65$ (agreeing with Dalitz's value quoted in footnote 7 as $\beta_{\tau} = 1.6 \pm 0.5$) and predict that $\beta_{\tau'} = -3.3$ and hence that $a_{\tau'} = -6.3$. A recent analysis of 72 τ' events¹ gives a value $a_{\tau'} = -7.1 \pm 3$, so that $\Delta I = \frac{1}{2}$ seems to be working well.

¹S. Bjorklund, E. L. Koller, and S. Taylor, Phys. Rev. Letters 4, 424, 475(E) (1960).

PROPOSAL FOR AN ELECTRON SPIN RESO-NANCE EXPERIMENT OF S-STATE IONS UNDER HIGH HYDROSTATIC PRESSURE. Hiroshi Watanabe [Phys. Rev. Letters $\underline{4}$, 410 (1960)].

The fraction (1/336) in the expression (2) should read (1/168).