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sents the failure of the resonance approximation
for large is i; in the resonance region, the effect
of the pole is negligible if v, is sufficiently large
and j." is not too large. The distinction between
the two viewpoints may be seen by noting that if
the pole is interpreted as a phenomenological
representation of the left-hand branch cut, then
po-m', where m is some average mass of the
intermediate states which contribute to the left-
hand branch cut. Since v, -100 - 1000 for values
of the width I' which fit the data on nucleon elec-
tromagnetic structure, ' one is led to suspect that
virtual baryon-antibaryon pairs play a prominent
role in producing the P-wave resonance, "un-

less an unstable vector boson such as Sakurai
and others have suggested' is present in the ori-
ginal field-theoretical Lagrangian.

If Eq. (10), with the pole removed, is inserted
into the iterative procedure of Chew et al. ,

~ then
the resonance should persist, and, in addition,
nonresonant terms will appear in other angular
momentum states; in particular, one should be
able to calculate the s-wave scattering lengths
in terms of the resonance parameters. It also
seems clear that a purely dispersion theoretic
approach will require at least two parameters
to obtain a P-wave resonance, since the one-
parameter theory of Chew et al. , which corre-
sponds to a X/4 pion-pion interaction, " seems
incapable of producing a resonance. Whether
these two parameters are to be related to the
pion-pion and pion-nucleon coupling constants,

or to the mass and coupling constant of the con-
jectured vector boson, cannot be decided on the
basis of present knowledge.
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Although the good agreement between theory
and experiment for the Lamb shift is one of the
notable successes of quantum electrodynamics,
the most recent tabulations' still have shown
small but significant discrepancies for H, D,
and He which have made a further increase in
the accuracy of the theoretical value desirable.
Since the listed discrepancy for He is roughly
60 times that of H or D, it was natural to try to
reduce this disagreement by calculating the
second order radiative correction of order
n(nZ)', which is the next order in(nZ), the
Coulomb interaction parameter, beyond the pre-

viously calculated'~' order of n(nZ)'.
A closer mathematical analysis ~' shows that

there exist the leading orders of n(nZ)'ln'(nZ)
and n(nZ)'ln(nZ) We have. completed the cal-
culation of these two orders. The analytic result
is

EE(2$ - 2P~2)

= -Lw[& ln'w +lnw(4 ln2+ 1+7/48)],

where &LE(2$ -2P„,) is the difference of the shifts
of the 2S and 2P» levels due to the two new orders,
w —= (nZ)', and L is Z' times the "Lamb constant":
L =-Z n3/(3s) ry=Z4(135. 6) Mc/sec. The nw'ln'w

580



VOLUME 4, NUMBER 11 PHYSICAL REVI EW LETTERS JuNE 1, 1960

g'(0) —=
I jd'p(plu) I'=8m'l(x =Olu) I',

g'(0)/(w') =8/(n') for nS state

=0 for L40,

(2)

where u is the nonrelativistic Schrodinger wave

coefficient vanishes for non-S states and is pro-
portional to 1/n' for the nS state. The value of
the nzosln'se coefficient has been recently con-
firmed by an independent calculation of Fried
and Yennie. '

The corresponding numerical results in Mc/sec
are -0.25 for H or D and -9.5 for He+. These
additions reduce markedly the disagreement be-
tween theory and experiment and, when added to
the theoretical values listed by Petermann, ' lead
to the new theoretical values listed in Table I,
which are compared with experimental values
for H, D, and He4. Theoretical errors are copied
from Petermann's article.

The theoretical foundation of the calculation of
the new orders has been briefly described in
reference 4. The method used is the free-
propagator expansion, the algebraic expansion
of the bound electron propagator or Green's
function in "powers" of the Coulomb potential.
This expansion was first employed in the Lamb
shift problem by Fried and Yennie' who success-
fully extracted the two lowest orders of Llnsv

and L with the aid of a special photon gauge. In
our method, this gauge is not employed and the
photon propagator is of the usual Feynman form
proportional to 1/k'.

Details of the calculation of the two new orders
will be published later along with more general
results of a mathematical nature concerning some
properties of the free-propagator expansion con-
nected with an expansion of the self-energy in
orders of (nZ) The r.emainder of this report
is devoted to a further presentation of the re-
sults of the calculation for arbitrary bound states
and in particular for the 1S, 2S, 2P», and 2P~2
states.

Let us introduce the notation

function in "Z-atomic" units (I = c =o.Zm =1).
These units will be understood in the following.

The shift bE, due to both the nm'ln'so and
o.mslnur terms can be conveniently expressed as

bF. = bE~+~2,
where AE, is of order uzi'1m' and proportional
to $2(0), and b,E2 is the sum of a number of
matrix elements which can be easily evaluated
to the desired order in m for the particular bound
state under consideration. b,E2 contains the en-
tire o.w'ln'w coefficient, proportional to tP(0),
and the remainder of the azo'lnw coqfficient,
which is not proportional to g'(0).
~, is given by

AE, = L,-wlnw(4 ln2 - ~ -
To

——-0.26). (5)
0'(0) 47 1

The last term in the parenthesis, -1/10, is due
to vacuum polarization and can be easily derived
as the effect of the Dirac modification of the
large-component wave function on the expecta-
tion value of the Uehling potential.

The remainder of bE is given by (V = -1/x)

~ Cke4E =-Lm2
SU

x [-4(u' I ...q'V lu) ——',i( o. .p.q'Vp. )iji j
-(11/1o)&P,""q'V" P,)+ (8/5)&P'" q'V)

+ 2(P .. .[P., v]P.& -8([P., v].. [P, , v))1 (8)

Here u' is the first "Dirac correction" to the
expansion in powers of zv of the exact large-
component wave function g: g=u+wu'. The
angular brackets ( ) denote the expectation value
with respect to the nonrelativistic Schrodinger
wave functions u. The three dots denote a con-
vergence factor of (1+wP') '. The lower limit
of integration is arbitrary but finite and fixed
(w - independent). ~

The evaluation of ~2 for the 1S, 2S, 2P&„
and 2P~2 states yields, with the omission of the

Table I. Theoretical and experimental values of the Lamb shift in Mc/sec for H, D, and He+.

H Da He

Theoretical

Experimental

1057.70 + 0.15

1057.77+ 0.10

1058.96 ~ 0.16

1059.00 + 0.10

14046.3 + 3.0
14040.2+ 4.5

aS. Triebwasser, E. Dayhoff, and W. Lamb, Phys. Rev. 89, 98 (1953).
bE. Lipworth and R. Novick, Phys. Rev. 108, 1434 (1957).
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AE, (28) = -Lwlnw(369/80 =4.61), (8)

~,(2I'») = -Iwlnw(103/240 = 0.43), (~)

~,(2P~, -2P») = -L,wlnw(-3/16 = -0.1&). (10)

The contribution to the fine structure separa-
tion 2P»-2I'+2 is due, of course, to the spin-
ox'bIt IIla'tx'ix eleInent of (6).

%e conclude this report with a brief specula-
tion about the magnitude of the uncomputed term
of order mL, , which is technically of higher order
than the orders calculated here through the ab-
sence of factors of lnm. Since the coefficient of
the lnw term in the 28-2P» shift given in (1) is
about 5 times as large as the ln'sg coefficient
and (-lnw) is only about 10 (8&) for H (He ), the
contribution of the lnw term is roughly 1/2 (3/6)
that of the ln'w term for H (He ) with opposite
sign. A comparable ratio of the "constant" to
the lme contribution would mean that the term of
order mI. is still important.

There are theoretical reasons, however, for
believing that this is too dark a picture and that
the "constant" term is only about 10% (20%) of
the shift calculated here for H (He ) due to the
logarithmic terms. Let us note first that the ln'
and ln contributions will change if one picks
so'=Am rather than I) as the argument of the
logarithmic factors, where A. is an arbitrary
se-independent number, a substitution which cor-
responds to the choice of I)' rather than M) as the
"natural" expansion parameter. ' Thus, Aln'gg

+Blnw+C =Aln'w'+B(A)lnw'+C(A), where B(X)
=B -2AlnA, and C(A.) =C+Aln'A. -Bink. .

If one assumes that the uncalculated "constant"
term, C(X), is negative for A, =1, which is in
accordance with the fact that all five previous
orders in w alternate in sign for A. =1 (and w & 1),
then it is rigorously true that the "constant" term
is of minimum absolute value (and &0) for some
value of A. greater than unity but less than A,

*
where x* is such that the coefficient, B(X), of
the 1nm' term vanishes. In our case, A. =e"=13.
Kith the choice A. =A. one finds that the contribu-
tion in Mc/sec to the Lamb shift due to the

pr eviously given nsosln2m term,

AE, (18)= -Lwlnw(24ln2+86/6 =33.8), (&)

logarithmic terms is changed from -0.25 to -0.28
and from -9.5 to -11.7 for H and He+, respec-
tively. e It is satisfying that the change is small
and in a direction towards improving the over-all
agreement with experiment.
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IThe spin-orbit and (pf. . .q V. . .p&) matrix elements

vanish for S states. The Dirac and (pI. . .qIV) matrix
elements vanish for non-8 states. For non-S states the
convergence factor may be eliminated and f chal/w re-
placed by lnw. For 8 states, the nonvanishing Schrod-
inger matrix elements diverge like ge ~2 in the limit
te 0 and therefore give rise to a lower order O.w~

contribution to ~ that should be discarded. [The
go ~2 part of the matrix elements could be eliminated
by replacing so by -so+is in the convergence factors
(1+wpI) ' and taking the real part of the matrix ele-
ments. j The nwIln w contribution is due to matrix
elements with a lnw divergence for 8 states. This
divergence is proportional to $2(0). The corresponding
matrix elements are the Dirac matrix element and the
two Schrodinger matrix elements involving (P&, V).

A similar situation arises for the lowest order con-
tributions of order 0.&+2lnzo (-Llnm) and O.A@2 (-L).
There, as is well-known, it is natural to introduce an

average excitation energy for the 28 state of magni-
tude (17.7)!2= 8. 8 and the term of order nw'I can be
made to vanish for a choice of X nearly equal to this
excitation energy.

9Virtually the same results ~ould have been obtained
for the choice X = 8. 8 corresponding to the 28 average
excitation energy.


