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The collective oscillation of neutrons and pro-
tons in nuclei which can be excited by an electro-
magnetic field leads to a resonant response of
nuclei' ' which is called the giant dipole reso-
nance. Several classical descriptions of this mo-
tion have been given and more recently attempts
have been made to describe the resonance start-
ing from an independent-particle description of
the nucleus. 4~' It is the purpose of this note to
clarify the relationship between those approaches.
We shall restrict ourselves to a discussion of the
classical treatment and shall give the detailed
quantum mechanical treatment in a separate pa-
per.

The giant dipole resonance is characteristic of
finite nuclei, but the same type of relative dis-
placement of neutrons and protons can occur in
nuclear matter. 6~' The description of the collec-
tive oscillation is very much simplified in the
absence of bounda, ries, so we shall restrict our-
selves to the case of nuclear matter. In the in-
terest of simplicity, we consider an unperturbed
state with equal neutron and proton densities. In
this case the type of collective motion of interest
is one in which the sum of neutron and proton
densities remains constant but the neutron and
proton densities separately fluctuate 180' out of
phase. The shift in neutron and proton densities
is opposed by the change in zero-point kinetic
energy and in potential energy which tends to re-
store the neutron and proton density to equality.
This effect, together with the inertial reaction of
the neutrons and protons, leads in the small-
amplitude region to harmonic oscillation of the
densities.

Since the oscillation for large wavelengths in-
volves a large number of nucleons, a classical
description is appropriate. Any description
starting from the single-particle approximation
must also lead to the classical result for long-
wavelength oscillations. s

To carry out the classical calculations, we
first determine the single-particle energies,
allowing for departures from the unperturbed
neutron-proton densities. The single-particle en-
ergies are in general given in the K-matrix a,p-
proximation' by
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and nj'0' as occupation number in the unperturbed
medium. Near the Fermi surface, the unper-
turbed potential energy Vz can be written(o)
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with rn the effective mass at the Fermi surface.
The remaining term in the potential energy as

given in Eq. (4) is most simply evaluated if the
sum over j is separated into neutron and proton
sums and the K matrix is resolved into its spin
and isotopic spin substates. In this evaluation
we set the momentum p~ equal to py, since for
long wavelengths of the collective oscillation the
excitations lie close to the Fermi surface. The
result is

(V)7 neutrons N+Z 7'

with
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v = -8(N+Z) K . +3K
7 ' singlet, even triplet, odd
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singlet, odd triplet, even average'

The average indicated in Eq. (7) is
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A result of the form of Eq. ('I) has previously
been given by Brueekner and Gammel9 in their
evaluation of the nuclear symmetry energy.

with nj the occupation number of the states of the
medium. We rewrite the interaction term as

(0)
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Equations (1), (2), and (6) exhibit the important
feature that the single-particle energies in gen-
eral will depend on the fluctuation in neutron-
yroton densities typical of the collective density
oscillations. This effect gives about half of the
nuclear symmetry energy, and gives an appre-
ciable shift in the frequency of the collective
oscillation. This important contribution to the
energy of the collective mode has not been in-
cluded in previous discussions4~ ' starting from
an independent-particle approximation.

Before we carry out the classical calculation, "
we must determine the change of the zero-point
kinetic energy as a function of the neutron and
proton densities. For isotropic variation of the
densities, the sum of the zero-point kinetic en-
ergy for neutrons and protons is

p' p'
2 2T=Z 2,+Z

iN ' iZ
P ' (N-z)* 3 P '
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with nD=3 for the three dimensions excited in
the medium. The mean change per nucleon then
iss (for N+Z constant)

(P.') BT 1 P 'N z-
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average D
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protons. (10)
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If the change in density is due to a one-dimen-
sional motion, then only one degree of freedom
is excited and nD in Eqs. (9) and (10) is equal to
one. The excitation of all three degrees of free-
dom takes place in ordinary sound propagation,
for example, because of collisions. In a plasma
oscillation, however, collisions are missing (ex-
cept for weak damping effects) and the oscilla-
tion is one-dimensional only. The three-dimen-
sional excitation can also occur because of co-
operative pairing effects" analogous to those in
superconductors; such effects are, however, ex-
pected to be absent in nuclear matter except for
very long wavelengths. Thus we shall set n~ = 1
in Eq. (10). In this we differ from the phenome-
nological treatment of Steinwedel and Jensen'
who used the empirical nuclear symmetry energy
which is obtained, of course, for isotropic den-

with pN and pZ the neutron and proton densities.
This replacement is valid as long as the collec-
tive oscillation has wavelength large enough to
include many nucleons. The classical equations
then are

dv
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with vZ and vN the average velocities of displace-
ment of the protons and neutrons and

P 2 1
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If the factor of 1/3 in Eqs. (9) and (10) were
included in the kinetic energy term in Eq. (12),
v would be the usual nuclear symmetry energy
K. Since the calculation of Brueckner and Gam-
mel gives v~=-,' p /m*, we have the approximate
relation

(14)

The effect of this change on the oscillation fre-
quency is apparent in Eq. (20), which shows that
the frequency varies at (u~)~.

In Eq. (12) we mean by mt the mass appropriate
to the collective displacement of the neutrons re-
lative to the protons. This will not in general be
equal to m~ since the excitation is collective,
the neutrons for example not changing their mo-
tion relative to the other neutrons as they do when
singly excited. However, since most of the po-
tential energy of a neutron is due to its interac-
tion with the protons, it is probable that mt is
nearly equal to m* and we shall take it equal in
the following.

We now linearize Eq. (12) for small fluctua-
tions, writing

v. = &$ /&t, .
2 2

j.p. =-.n„+p-',
V

sity changes in nuclei.
To obtain the classical equations of motion, we

now replace in Eqs. (6) and (10)

(N z)-/(N+z) = (p -p )/(p +p ),
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and also making use of the fact that p~+ p~ = po
is constant. The result is

—,'p, div(8~. /8t)+ (8p. /8t) = 0

Equation (12) then becomes (we drop terms quad-
ratic in the velocities, and set mf =m*)

m* 8a) /8P = u V div($& - (&),

m«8'] /8P=u V div(( - $ ). (18)

This is a wave equation of usual form, giving the
dispersion relation between frequency and mo-
mentum q,

or, from Eq. (13),

2u (q)'
m«(Sj ' (20)
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Since vf-=3 p~ /m«, the correction to Rv is about
15/p. ft is not possible to extrapolate this result
to finite nuclei, but it is clear that this collective
effect can lead to appreciable elevation of the
eigenvalue above the single-particle value.

The result previously obtained by Landau and

by Qlassgold, Heckrotte, and%atson7 is of the
form

R(u=(qP /m«)(1+e ), (22)

with

~=4~'/[V(0)m«P ],

and V(0) the matrix element of the two-particle
interaction for small momentum transf er. The
correction term e + arises from the collective
character of the motion, the derivation of this
term following the usual treatment of the collec-
tive excitations in the electron gas. This treat-

Now assuming one-dimensional motion and com-
bining the neutron and proton equations, we find

8'(~,-&
)
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ment omits, however, the collective effect we
have considered. The estimate by Glassgold et al. ,
using reasonable nuclear matrix elements, gives
a value for e + of about 1% so that a negligible
shift in the frequency occurs from this effect.
This is in contradiction with the suggestion by
Brown and Bosterli' that the large shift in the
giant dipole frequency from the single-particle
value can be attributed to this term.

In summary, we wish to re-emphasize the large
role played in the nuclear symmetry energy by
the change in potential energy resulting from den-
sity changes. This well-known effect necessarily
appears in a classical discussion of the giant di-
pole resonance. Finally, as we have pointed out,
a correct discussion of the collective motion
starting from a single-particle approximation
will lead to the classical result.
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