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magnetic field [i.e. , the critical field has the
functional dependence Hc =M ™F(M~X)on the
isotopic mass M, where n is a constant equal to
about I/2], the difference in the specific heats
(Cn - Cs) must have the form M ~f (M+T). The
electronic terms have this dependence, but

nn ~M ', so that the lattice term in the normal
state does not have the required form, from
which Chester concludes that n„TS must be can-
celled by an identical term in Cz.

Though the sirgilarity rule for isotopic mass
holds accurately for some elements, '~' we are
not aware of critical field measurements on the
two natural isotopes of indium. However,
Muench reported that another similarity rule,
namely that the shape of the critical field curve
is independent of pressure, does not hold for
indium. ' It would be desirable to have critical
field measurements on the In isotopes, as well
as extended heat capacity measurements on other
soft supereonduetors having high T and rela-

tively large lattice terms.
A detailed discussion of our data up to 4 K will

appear in a forthcoming article.
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The observations made in this paper call into
serious question many details of the modern
electron theory of metals. It will be shown be-
low that, almost certainly, the Hartree-Pock
ground state of a Fermi gas with Coulomb inter-
actions is not the familiar Fermi sphere of oc-
cupied momentum states, but rather a state in
which there are large static spin density waves,
and in which large energy gaps exist in the
single-particle excitation spectrum.

In order to emphasize the essential physical

simplicity of the new low'-energy states, we
shall treat first a one-dimensional model. (Only
translational freedom will be restricted to one
dimension; the ordinary spin degrees of freedom
will be retained. ) The kinetic energy operator
will be the usual one; and we shall assume that
the repulsive interactions are delta functions:

=re(z. -z.). ..ij i

The normal state of such a, gas —N electrons in
a box of length L —has all (plane wave) states
occupied for 1k l

~ ko = vN/2L. The total kinetic

energy is p'EF, where EF =0'0,'/2m; and the
expectation value of the interactions (direct
plus exchange) is yN'/4L. It is of interest to
compare the energy of the normal state with
that of the ferromagnetic state (all spins paral-
lel):

=NE I-n ',
ferro normal F (2)

where

n = (N/L)/(2my/v'5'),

a dimensionless quantity proportional to the
electron density, N/L. The critical density, at
which a transition between the normal and ferro-
magnetic states would occur, corresponds to
n=1. We shall prove, however, that the normal
state is never the Hartree-Fock ground state,
and that the ferromagnetic state is stable only
for n& ~.

We shall "begin" by writing down the self-
consistent Hartree-Pock potential for the solu-
tions of interest.

U(z) =2gE (a cosqz+0 sinqz),
x
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where g and q are parameters to be determined
later, and oz and o& are the usual Pauli matrices.
The z direction ne0d not be perpendicular to the
(spin) x -y plane, but the spiral exchange poten-
tial (4) is perhaps easiest to visualize for that

special case. This potential has the remarkable
property that its only nonzero matrix elements
are between the states (0, o.') and (k+ q, P), where
u and P are the spin-up and spin-down spin
functions. The exact single-particLe solutions
for this potential are

for spin-up states, and

=[ge P+(E -(u )e n]/L [g +(E -(u ) ]
ikz - i(k-q)z 1/2 2 - 2 1/2

for spin-down states. The free-particle ener-
gies are 2Ey &ok, where

cu = -', (k/k )',

and the perturbed single-particle energies,
2Zyp. k, are given by

and b = q/2k, . Since the total electron density of
the new state is spatially uniform (as it is for
the normal state), the only new contribution to
the potential energy is an (algebraic) decrease
of the total exchange energy, J. After another
lengthy calculation, one finds

E +=-,'((u +(u )+[-,'((u -& )'+g ]"',
k+q 4 k k+q b J' = (NE /4n-) [(g/b) LnS]2. (10)

together with a similar expression for Ek hav-
ing q replaced by -q. The single-particle energy
spectrum is shown in Fig. 1. Note the unusual
feature that the energy gap, 4gEg, occurs on
only one side of k=0 for a given spin. Near the
energy gaps the real spin directions spiral in a
plane perpendicular to the axis of spin quantiza-
tion.

The Ã-electron wave function will be a single
Slater determinant of wave functions (5). For
any given q, the lowest energy is achieved if the
occupied states satisfy --,'q - k - 2k, - -', q for spin
up, and -2ko+-,'q ~k& -', q for spin down. The
amplitude g must then be determined so that the
Hartree-Fock equations are satisfied. Such a
procedure yields the required value of g im-
mediately. An alternative way is to calculate
the expectation value of the total energy, and
subsequently to minimize that energy with re-
spect to g. A somewhat long, but straightfor-
ward, calculation gives the following result for
the kinetic energy of the N-electron wave func-
tion, relative to that for the normal state:

b,T =NE (1 - b)2

-q/2 0

SPIN

SPI N

DOV/N

where

+1' [2b -(4b'+g )"'+(g /2b)LnS],

S = [2b+ (4b'+g')"']/g,
FIG. 1. Single-particle energy level spectrum for

an electron gas with a giant spiral spin density wave.
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An appreciable number of additional algebraic
steps allows one to conclude that the sum of (8)
and (10) is a minimum when

g = 2b/sinh(2mb).

If this value is inserted into (8) and (10), the
total energy of the new N-electron wave function
relative to the normal state becomes

W =NE [I+5' -2bcoth(2nb)]. (12)

This result is negative definite for 5 =1, the
value which corresponds to the same k-state oc-
cupation as the normal state. Consequently, the
normal state is always a highly excited state.
In fact, within the field of variation employed
here, for b = 1, the normal state is an energy
maximum.

The value (ll) may be inserted into the wave
functions (5), and the exchange potential opera-
tor computed according to its basic definition.
One obtains a constant plus (4), the coefficient
of the latter being in agreement with (11). There-
fore, an N-electron state employing the functions
(5) provides an exact solution of the Hartree-
Fock equations for arbitrary b. One can show
easily that the value of 5 which, in turn, mini-
mizes (12) is less than unity. In fact, as n de-
creases (decreasing density or increasing inter-
action strength), b - 0, at which value (12) and

(2) become equal. This occurs at n = . It should
not be necessary to emphasize that the new
lowest energy state has not been proved to be
the Hartree-Fock ground state. However, we
shall refer to it as the lowest (known) state.
This lowest state has a spiral antiferromagnetic
structure. The wavelength of the spiral is small,
-m/ko, for high density and gradually becomes
larger, approaching ~, as the density is re-
duced. Consequently the transition from spiral
antiferromagnetism to ferromagnetism is a
gradual one.

States above the energy gap can be occupied
(e.g. , by thermal excitations), but the spin direc-
tions of these states are out of phase with the
spin density wave. As a result, the self-con-
sistent amplitude of the spin density wave will
be reduced, together with its contribution to the
total energy. At a sufficiently high temperature—
some fraction of the Fermi temperature —a sec-
ond order phase transition will occur, and the
normal state, with excitations, will (at last)
become the state of minimum free energy. One
can also construct nonspiral spin density wave

states by employing an exchange potential
~o cos2k, z, instead of (4). These states, too,

are always much lower than the normal state,
but by an amount less than half that of the lowest
spiral spin density wave. '

The physical reason why the spin density wave
states are always lower than the normal state
is, of course, the increase in magnitude of the
exchange energy resulting from the local aug-
mented parallelism of spins. The opposing term
is of course the increase in kinetic energy. But
the states most highly perturbed —those near the
energy gap —are mixed with states of almost
equal kinetic energy. Consequently this increase
is sufficiently small to allow the exchange ener-
gy to dominate. In fact, in the limit of small g
(considered again as a variational parameter),
the r'atio of exchange energy increase to kinetic
energy increase approaches infinity (although
only logarithmically). This observation makes
it easy to prove that the normal state of a Fermi
gas is unstable with respect to spin density wave
formation for rather general repulsive inter-
actions. Indeed, if the Fourier transform V(k)
of the interaction is large for small k, as it is
for Coulomb interactions, the instability is en-
hanced, since the highly deformed single-particle
states are close together in k space. (One must
observe here that the fractional transfer of wave
function amplitude to states across the Fermi
sea is compensated by transfers in the reverse
dir ection. )

The theory for a three-dimensional electron
gas is almost identical to that given above for
one dimension. It is necessary, however, to
divide the electrons into at least three groups,
and to allow each group to be deformed by its
own spin density wave. For this reason the
problem remains essentially one -dimensional.
The occupied k states of each group will lie with-
in a pyramidal cone (whose central axis is paral-
lel to the wave vector of its spin density wave).
For a given spin direction of a given group, the
Fermi surface will be a plane on the energy gap
side, and (approximately) a spherical polygon
on the opposite side, as illustrated by the shaded
region in Fig. 2. For strong interactions the
complete Fermi surface will consist of a cube,
at the surface of which is a large energy gap,
and a sphere, at which E(k) is continuous. Addi-
tional kinetic energy is required, of course, to
occupy the unperturbed states in this way, but
this will be more than compensated by the lower
energy resulting from the spin density wave
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FIG. 2. Fermi surface for an electron gas with
large repulsive interactions. The shaded region —a
pyramidal cone —indicates the occupied states of a
given spin for one (of three} groups of electrons. A
large energy gap exists at the surface of the cube.

deformations. For weak interactions the inner
Fermi surface will be a many-faced polyhedron,
each pair of opposite faces arising from a spin
density wave, and its volume will almost equal
that of the sphere.

The foregoing description provides a means
for "putting together" a three-dimensional elec-
tron gas in which the main effects of giant spin
density waves are incorporated. The description
is accurate only if the (off-diagonal) oscillatory
part of the exchange potential between electrons
of one group and those of another is neglected.
Such effects; if included, will cause additional
perturbation of the single-particle wave functions,
will lower the total energy even further, and will
prevent (fortunately) the boundary planes be-
tween different groups from having any sharp
physical significance. Also, additional energy
gaps in the spectrum of each group mill be intro-
duced by these perturbations. Consequently, the
spherical part of the Fermi surface will lose
some of its continuity. Such refinements need
not be elaborated here, however.

A quantitative estimate of the energy gap at

the surface of the cube for a typical metal with
Coulomb interactions yields -10 ev. (This esti-
mate involves the formulation and solution of a
complex nonlinear integral equation, and will be
discussed elsewhere. ) There seems to be little
doubt that giant spin density waves should have
numerous and profound consequences with re-
gard to the properties of metals. Fortunately
there remains some semblance of a Fermi
sphere, but its states are no longer doubly de-
generate. On the other hand, one can think of
many experiments which might have revealed
the existence of giant spin density waves, but
have not: neutrons should suffer coherent mag-
netic diffraction in any metal, Langevin para-
magnetism should not occur in metals or alloys,
nuclear resonance lines should not be observed
at their expected frequencies, if at aQ, etc. A
possible escape from such enigmas is provided
by the existence of collective excited states, of
at least three varieties, relative to the spin
density waves. Besides providing additional
transport mechanisms, the excitation of collec-
tive modes (spin waves on the giant spin wave)
will cause rapid fluctuations in the local spin
density directions. It is by no means obvious
that such fluctuations will be sufficiently rapid
to avoid the unfortunate consequences just men-
tioned. Correlation energy differences are
probably far too small to invert the new lowest
state and the normal state in approximations
beyond the Hartree-Fock scheme. Further re-
search is necessary before one can decide
whether or not a real paradox exists.

J. des Cloizeaux, J. phys. radium 20, 606 (1959)
and 20, 751 (1959), has employed oscillating (nonspiral)
spin density waves to describe the electronic structure
of antiferromagnetic transition-metal oxides, an ap-
proach originally suggested by Slater [J. C. Slater,
Phys. Rev. 82, 538 (1951)]. Here, the wave vector
q is required to be half of a reciprocal lattice vector,
and the state is energetically stable only if the Coulomb
interactions are sufficiently large.
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