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single measurement of T, on the same constant-
volume curve as that of Fig. 3 was about 40 min-
utes at 0.1'K. This is shorter by about 50 orders
of magnitude than it would have been if it had
continued to follow the exponential curve T,
=3 x10 'exp(14/T) of Fig. 3. One complete set
of T, measurements has been obtained between
0.7 and 0.14'K at a relatively low density (start-
ing temperature and pressure 0.8 K and 500 psi).
In this case T, was about 20%%uo higher at 0.14'K
and O. V"K than at intermediate temperatures but
seemed roughly constant at 0.55+ 0.05 second
between these limits.

In summary, the following information about
solid He' is obtained from the results: (1) In the
cases where there is a volume change associated
with the o'. -P transition there are also large
changes in the relaxation times. Since the re-
laxation in the n phase in these cases is pr i-
marily due to diffusion, there must also be
changes in the diffusion coefficient across the
phase boundary. (2) In the cases where the vol-
ume change approaches zero. there are no changes
in the relaxation time across the boundary and,
consequently, if there are changes in the diffu-
sion coefficients, there must be compensating
changes in other relaxation mechanisms. Even
in these cases there remains a discontinuity in
the rate of change with pressure of the relaxation
times at the phase boundary. (3) For tempera-
tures above 1.3V K the n phase behaves as an
ordinary solid with a large diffusion coefficient.

That is, the relaxation is determined by an acti-
vated diffusion of the atoms through the lattice.
However, at temperatures somewhat below 1'K
the relaxation is much too fast to be explained by
the classical diffusive motion of the Bloembergen,
Purcell, and Pound theory.
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Heat capacity measurements on two indium
specimens indicate that the T' term in the spe-
cific heat is smaller in the superconducting than
in the normal state, contrary to the usual assump-
tion that it is the same in both states. The ex-
pected temperature dependence in the normal
state is

C =C +yT+Q. T~+p T',
n q n n

and in the superconducting state,

C = C + ay T exp( 7iT /T) + n T3+P-T',
S g C C s s

T&O.VT .
C

In each case, the first term, C&, is the contribu-
tion from the nuclei due to an electric quadrupole
interaction similar to that found in rhenium. '
From the microwave resonance measurements
of Hewitt and Knight" it follows that C& =9.0&&10~
millijoule/mole deg, which is 11% of Cs at
0.35'K, the lowest temperature reached in the
measurement, and decreases to less than 1%%up of
Cs at 0.6 K. The second term in Cs is the elec-
tronic specific heat, Ces, of a superconductor
at temperatures below O, VTc, and is less than
1% of Cs below half a degree, In this term, a
and b are quasi-universal constants, and Tc is
the transition temperature of indium (3.4'K). A
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well-known expansion of the general expression
for the electronic specific heat in the normal
state yields yT for the first term, which is
generally a very good approximation.

For estimating a„, az, and y, the specific heat
data, now denoted by C„and C~, are plotted as
(C„-C&)/T and (Cs -Cq)/T versus T' in Fig. 1.
It is evident that the upper points can be repre-
sented by Eq. (1), and since they lie on a nearly
straight line, P+T' is very small in this region.
A straight line through these points has a slope
uz =1.55 millijoule/mole deg' and yields y =1.61
millijoule/mole deg'. Although our data agree
with those of Clement and Quinnells within the
experimental error up to 4'K, they find nz ——1.50
and y = 1.81, using the 1948 temperature scale
and extrapolating their data below 1.7'K.

Under the usual assumption that the lattice spe-
cific heat in both states is the same, one would
expect the lower set of points to have the limiting
slope a„as T -0. A line of slope e„has been
drawn through the origin, showing that C~& n+T
for T'&0.6. In fact, the lattice term in (Cs -Cq)

cannot be greater than 1.1T' at the lowest tem-
perature reached (or not greater than 1.2T' if
the estimate of C& were reduced to zero).

When these results were first obtained, the
unexpectedly low value of y and C~ led to a re-
investigation of the conceivable sources of sys-
tematic error. Besides errors in.the readily
checked factors, such as heat capacity of the
addenda (at most, 2%%uo of the total), heater cur-
rent and resistance, and duration of heating
pulse, there can be hidden errors in the ther-
mometry and heat input for which limits must be
set. The temperature scales used to calibrate
the carbon resistance thermometer are based on
the 1958 vapor pressure scale for He' above 1'K
and on the He' scale of Sydoriak and Roberts,
adjusted to the 1958 He scale. An iron ammon-
ium alum salt thermometer provided an additional
check on the calibration over most of the range,
and replaced He' vapor pressure as the standard
below 0.45'K. The largest possible error in C
due to calibration, including effects of contamina-
tion of the He' by about 1% He, is estimated at
2%%uo. The measurements below 1'K were done
after midnight to avoid most of the sporadic
heating from electrical and mechanical disturb-
ances. The possibility was investigated that
there may have been stray heat input during the
heating periods. An extrapolation procedure
corrected for the steady heat leak to the sample,
which was not more than 3% of the input rate
during a heating period. It is felt that the total
systematic error in heat input is less than 1%%.

Afterward, a second sample was vacuum cast
and annealed from 99.999%%uq indium, and it pro-
duced the same results.

Below 0.7T~, C~ can be represented rather
well by the empirical formula

1.5 0.5
C +ayT exp(-bT /T)+n (T)T,
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FIG. 1. Specific heat of two indium specimens in
the normal and superconducting states after subtracting
a nuclear contribution, C&. The upper points, meas-
ured in a magnetic field of about 400 oersteds, are
for the normal state. The solid line which is parallel
to these points represents the lattice term in the
normal state, and has been superimposed on the points
measured in zero field, when the indium is supercon-
ducting.

with ns(T) =1.77e / when a=11 and b=1.6,
which are estimates based on their values for
other superconductors. Thus, ns(T) diminishes
toward lower temperatures, as if the lattice were
becoming stiffer as the electron excitation de-
creases. Alternatively, Cz may be written with
a negative term attributed to the influence of the
electrons on the phonon spectrum. In either
representation, the separation of C~ into pure
"electronic" and "lattice" terms is convenient
but imprecise nomenclature.

It has been pointed out by Chester' that as a
consequence of the similarity rule for the critical
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magnetic field [i.e. , the critical field has the
functional dependence Hc =M ™F(M~X)on the
isotopic mass M, where n is a constant equal to
about I/2], the difference in the specific heats
(Cn - Cs) must have the form M ~f (M+T). The
electronic terms have this dependence, but

nn ~M ', so that the lattice term in the normal
state does not have the required form, from
which Chester concludes that n„TS must be can-
celled by an identical term in Cz.

Though the sirgilarity rule for isotopic mass
holds accurately for some elements, '~' we are
not aware of critical field measurements on the
two natural isotopes of indium. However,
Muench reported that another similarity rule,
namely that the shape of the critical field curve
is independent of pressure, does not hold for
indium. ' It would be desirable to have critical
field measurements on the In isotopes, as well
as extended heat capacity measurements on other
soft supereonduetors having high T and rela-

tively large lattice terms.
A detailed discussion of our data up to 4 K will

appear in a forthcoming article.
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The observations made in this paper call into
serious question many details of the modern
electron theory of metals. It will be shown be-
low that, almost certainly, the Hartree-Pock
ground state of a Fermi gas with Coulomb inter-
actions is not the familiar Fermi sphere of oc-
cupied momentum states, but rather a state in
which there are large static spin density waves,
and in which large energy gaps exist in the
single-particle excitation spectrum.

In order to emphasize the essential physical

simplicity of the new low'-energy states, we
shall treat first a one-dimensional model. (Only
translational freedom will be restricted to one
dimension; the ordinary spin degrees of freedom
will be retained. ) The kinetic energy operator
will be the usual one; and we shall assume that
the repulsive interactions are delta functions:

=re(z. -z.). ..ij i

The normal state of such a, gas —N electrons in
a box of length L —has all (plane wave) states
occupied for 1k l

~ ko = vN/2L. The total kinetic

energy is p'EF, where EF =0'0,'/2m; and the
expectation value of the interactions (direct
plus exchange) is yN'/4L. It is of interest to
compare the energy of the normal state with
that of the ferromagnetic state (all spins paral-
lel):

=NE I-n ',
ferro normal F (2)

where

n = (N/L)/(2my/v'5'),

a dimensionless quantity proportional to the
electron density, N/L. The critical density, at
which a transition between the normal and ferro-
magnetic states would occur, corresponds to
n=1. We shall prove, however, that the normal
state is never the Hartree-Fock ground state,
and that the ferromagnetic state is stable only
for n& ~.

We shall "begin" by writing down the self-
consistent Hartree-Pock potential for the solu-
tions of interest.

U(z) =2gE (a cosqz+0 sinqz),
x


