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from this solution by specializing p as before,
substituting p=X a+A 'p, o=ko, $=Xa$, rl =Xaj™,

q=X~q, where X is constant, and taking the limit
as X tends to zero. There is then a singularity
on every wave front where the homogeneity con-
ditions O'H/9)3 = O'H/Bt)'= 0 are violated.
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In this note we describe a new method for
formulating local observables, and Poisson
brackets between them, in Einstein's theory of
gravitation. The applicability of this method
depends on the functional independence of the
four scalars of the Weyl tensor but involpes no
global or topological assumptions. It combines
the Hamiltonian approaches of Dirac' with the
construction of observables by Komar, ' and it
leads to closed-form expressions both for the
observables and the Poisson brackets.

Our point of departure is the discovery that the
four scalars of the Weyl tensor can be expressed
in closed form in terms of the 12 canonical vari-
ables g~z, P

"as defined by Dirac. Using the
notation,

(+0) -1/2
'mn mn'

to denote Dirac's "invariant velocities, "we find
for the components of the Weyl tensor the follow-
ing expressions:

C. =38. +v v. - v. v
iklm iklm kl im il km'

tic) scalars are

~1 iklm ikl kl
iklm ikl k'l

fP-xP=O, (4)

which determine the coordinate system uniquely.
These four coordinate conditions, along with the
constraints

iklm s k'lm s

E™is Levi-Civita's (three-dimensional) fully
antisymmetric tensor, and indices are raised
and lowered with the help of the three-dimen-
sional metric em", gmn.

In order to retain flexibility, we shall assume
that the four intrinsic coordinates to be used will
be some four functions fP(A', . . ., A') whose
specification we may reserve; if desired they
may be chosen so that the f coordinates are
asymptotically Lorentzian for some specific
Riemann-Einstein manifold. We shall, accord-
ingly, introduce the four coordinate conditions

lP-v
ill ihip li/0 lk/i ' H =0, H =0,s ' I. (5)

pa im
Ckl C

kl
l l =-e C'kl

'Riklm denotes the three-dimensional curvature
tensor, and the solidus signifies covariant dif-
ferentiation with the help of three-dimensional
Christoffel symbols. The Weyl scalars are
quadratic and cubic expressions in these com-
ponents. For instance, the first two (the guadra-

form a system of eight second-class constraints,
and hence lend themselves to the construction
of field variables and functionals whose Poisson
brackets with all the constraints (4), (5) vanish.
Such variables are then observables in the techni-
cal sense in which this expression is used now
in general relativity. They are identical with the
observables constructed in reference 2, but now
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they appear as closed-form expressions in terms
of Dirac's 12 canonical field variables.

As a preliminary we note that the remaining
components of the metric tensor are uniquely
determined by the coordinate conditions, and that
they are closed-form expressions in terms of the
canonical variables. We have

(g ) O(~, a ) = [f , a ],
00 1/2, 0

e are determined as follows:

g y0=(g ) [&~A]-g y, ,
00 00 1j2 Os

e =[f,A]+ [f,f ]y d x,k k k p', 3,
p

(6)

Of = -f Ox
~ 0

Since the right-hand side contains the 5m~ only
undifferentiated, no derivatives of the delta func-
tion will occur on the right of Eqs. (6).

To construct an observable we start from any
functional of the canonical variables, A. We shall
now add to A a linear combination of the con-
straints (4), (5), so that the new functional A~

commutes with all of them,

A =A+~~[y (f -x )+~ H +~ H ]d x.p p s L 3

p s L (6)

Provided the constraints are satisfied, A* will
equal in value the original A, The coefficients y,

For the consistency of the whole scheme it is of
the essence that the Poisson brackets on the right
contain only the delta function as a factor, and

not, e.g. , derivatives of the delta function. This
condition is satisfied automatically, because the
constraints (5) are generators of infinitesimal
coordinate transformations, and the fP, being
scalars, have transformation laws that consist
solely of the transport term,

dA* BA*

df
=

af
= „~y' "'

A fuller account of our results will be sub-
mitted to the Physical Review.
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The inversion of the matrix of the Poisson brac-
kets of the second-class constraints is thus
accomplished locally and without difficulty. The
Poisson brackets between any two observables
A~, 8 can now be calculated by means of the
conventional Poisson brackets between canonical
field variables.

The Poisson bracket between A* and the Hamil-
tonian vanishes, because the Hamiltonian is but
a linear combination of the constraints (5), as
was originally shown by Dirac. ' Nevertheless,
A* is not a constant of the motion, but rather we

have
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