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This note presents a class of solutions to Ein-
stein's gravitational equations for empty space.
Some of the solutions appear to represent a very
simple kind of spherical radiation. The metric
considered has the form

ds'=2dpdo+ (K - 2Hp - 2m/p)dv'

- p'p '([d(+ (aq/sq)do]'+ [dq+ (Bq/s()do]'),

where m is a function of o only, P and q are
functions of o, &, q,

H =P 'BP/au+Pe'P 'q/e'er) -Pqs'P '/8)Br),

and K is the Gaussian curvature of the surface
p =1, 0=constant,

P2(e2/S)2+ e2/8~2) lnP

For this metric, the empty- space condition Bg,
=0 reduces to

8'q/8$'+ 8'q/Br)~ = 0

(from which we can derive q = 0 by a coordinate
transformation), and

8 K/8$ + 8 K/Br)2 = 4P -'(8/80 - 3H)m.

If these equations are satisfied, the curvature
tensor may be written as

"kl ijkl "kl "kl '

where Dzjk/, IIIzjkl and ¹gjkl are tensors of type
I degenerate, type III, and type II null, respect-
ively. They are covariantly constant on any ray
of constant o, $, q

The solution is degenerate type I if m is non-
zero and K is independent of $, q. It is then re-
ducible to m =1, P =cosh', g, q=0, where p, is a
real or purely imaginary constant. If p, is real
and nonzero, this is Schwarzschild's solution for
a mass p, 3.

If (BK/8$)'+ (BK/Bq)'p 0 and the empty-space
equations are satisfied, the metric is type II non-
null or type III, the condition for type III being
m = 0. As an example of these types, we mention
m=constant, P=P', q=0. This contains a re-

gion of incorrect signature, which can be elimi-
nated, however, by the substitution $=4$ '

In the remaining case, where m vanishes and
K is independent of $, q, the solution is type 11

null or flat, the condition for flatness being A = 0,
where

A = (8/8(+ ia/srl) [P'(8/s(+ ie/Br))H].

For K nonzero, I 4/Kp I is invariant under all
coordinate transformations which preserve the
form of the metric. It might be described as the
intensity of the gravitational field.

This metric and the plane gravitational wave
have the same local geometry, since their cur-
vature tensors are algebraically indistinguishable.
The wave fronts are subspaces of constant 0. In
the linear approximation, they are spheres ex-
panding at the speed of light, the source having a
velocity less than, equal to, or greater than this,
according as K is positive, zero, or negative.

The coordinates $ and q may be chosen so that
P = 1+—4(P+ q') K(o). All components of the cur-
vature tensor —covariant, contravariant, and
mixed —are then homogeneously linear in q. The
contravariant metric tensor may be divided into
a flat background metric, independent of q, and
a residue which is homogeneously linear in q.
There is thus an uncommonly close relation be-
tween the rigorous solution and its linear approxi-
mation.

It is easy to construct nontrivial solutions which
are periodic in 0. In such a solution. there is no
monotonic change which could be identified as
loss of energy by the source. For positive K,
however, there is at least one singularity on any
wave front where the field does not vanish iden-
tically; and P. G. Bergmann has suggested that
this might conceivably represent a flow of matter
which restores to the source the energy carried
away by radiation.

We can derive the plane-fronted wave, '

ds'=2dpd&r 2Hda' - diam- dq-,

BH/ep = 82H/8)2+ 8 H/Br/ = 0,
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from this solution by specializing p as before,
substituting p=X a+A 'p, o=ko, $=Xa$, rl =Xaj™,

q=X~q, where X is constant, and taking the limit
as X tends to zero. There is then a singularity
on every wave front where the homogeneity con-
ditions O'H/9)3 = O'H/Bt)'= 0 are violated.

W'e are much indebted to Professor P. G. Berg-
mann for his comments on an earlier draft of

this note.
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In this note we describe a new method for
formulating local observables, and Poisson
brackets between them, in Einstein's theory of
gravitation. The applicability of this method
depends on the functional independence of the
four scalars of the Weyl tensor but involpes no
global or topological assumptions. It combines
the Hamiltonian approaches of Dirac' with the
construction of observables by Komar, ' and it
leads to closed-form expressions both for the
observables and the Poisson brackets.

Our point of departure is the discovery that the
four scalars of the Weyl tensor can be expressed
in closed form in terms of the 12 canonical vari-
ables g~z, P

"as defined by Dirac. Using the
notation,

(+0) -1/2
'mn mn'

to denote Dirac's "invariant velocities, "we find
for the components of the Weyl tensor the follow-
ing expressions:

C. =38. +v v. - v. v
iklm iklm kl im il km'

tic) scalars are

~1 iklm ikl kl
iklm ikl k'l

fP-xP=O, (4)

which determine the coordinate system uniquely.
These four coordinate conditions, along with the
constraints

iklm s k'lm s

E™is Levi-Civita's (three-dimensional) fully
antisymmetric tensor, and indices are raised
and lowered with the help of the three-dimen-
sional metric em", gmn.

In order to retain flexibility, we shall assume
that the four intrinsic coordinates to be used will
be some four functions fP(A', . . ., A') whose
specification we may reserve; if desired they
may be chosen so that the f coordinates are
asymptotically Lorentzian for some specific
Riemann-Einstein manifold. We shall, accord-
ingly, introduce the four coordinate conditions

lP-v
ill ihip li/0 lk/i ' H =0, H =0,s ' I. (5)

pa im
Ckl C

kl
l l =-e C'kl

'Riklm denotes the three-dimensional curvature
tensor, and the solidus signifies covariant dif-
ferentiation with the help of three-dimensional
Christoffel symbols. The Weyl scalars are
quadratic and cubic expressions in these com-
ponents. For instance, the first two (the guadra-

form a system of eight second-class constraints,
and hence lend themselves to the construction
of field variables and functionals whose Poisson
brackets with all the constraints (4), (5) vanish.
Such variables are then observables in the techni-
cal sense in which this expression is used now
in general relativity. They are identical with the
observables constructed in reference 2, but now
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