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is amusing to note that in the absorption by Fe,O~

of the emission lines of Fe" in ordinary iron,
two such accidental coincidences do indeed occur
to give substantial absorption at zero velocity.

We wish to thank many of our colleagues,
particularly M. Goldhaber and J. Weneser, for
interesting discussions, and G. K. Wertheim
for providing us with a sample of the particular
stainless steel used in his measurements. '
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It is usually assumed that the Hartree (or
Hartree-Fock) ground state of a Fermi gas is the
familiar sphere of occupied momentum states.
For a noninteracting gas such is, of course, the
ground state; and for an interacting gas, this
state is, to be sure, an exact solution of the
Hartree-Pock equations. But to regard it as the
lowest single-particle state has always been an

unproved assumption, and indeed a false one.
Explicit Hartree states of lower energy will be
displayed below for a Fermi gas with attractive
interactions. This problem is of practical inter-
est with regard to nuclear matter, and will be
discussed within that context. It will be shown

that there are large static density waves in nu-

clear matter, so that (to an adetluate approxima-
tion) the total nucleon density has the following
spatial variation:

p = po(1+ y cosqx)(1+ y cosqy)(1+ y cosqz). (1)

In another paper it will be shown that a low-

energy Hartree-Fock state of a Fermi gas with
repulsive interactions will have large spin den-

sity waves. It should not be necessary to em-
phasize that these new states have not been
proved to be the ground state in the single-par-
ticle approximation, although they do have con-
siderably lower energy than the "normal ground
state. " However, it seems clear that any attempt

to improve upon the single-particle approxima-
tion, such as the many-body techniques developed
in recent years, should begin with the lowest
Hartree- Fock state available.

It is not our purpose here to present a general
argument, applicable to all conceivable interac-
tions, but rather to illustrate the physical struc-
ture of the new low-energy states within the
framework of a simple model. We shall treat
first a one-dimensional problem, and afterwards
a three-dimensional nucleon gas. Consider a
large number N of spinless Fermi particles in a
one-dimensional box of length L. The kinetic
energy operator will be the usual one. We shall
assume the total interaction energy of the gas to
be

L
v = (gl./mls)f p*ch, -

where p(x) is the total particle density and P a
constant. If the difference between N and N-1 is
neglected, the Hartree potential U(x) experienced
by any one of the particles is

U(x) = (pL/N) p(x). -

[The results to be derived are by no means lim-
ited to the particular interaction (2). For ex-
ample, any power of p may be used in the inte-
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(uk = —,'(k/k, )', (4)

and EF is the Fermi energy, k'ko'/2m, with ko
= mN/L, the wave number at the Fermi surface.

Consider now the following single-particle
wave functions:

grand of (2). However, the requirement that the
equilibrium density be finite restricts that power
to values between 1 and 3.] The single-particle
quantum states will be indexed according to the
wave vectors allowed by periodic boundary con-
ditions. The usual momentum states will have
energy 2cokEF, where

the distorted states (5) can be (tediously) eva-
luated in a straightforward manner:

T=SNE [1+3E(g)], (8)

where

E(g) =1-(1+g')~'+g'1n[g '+ (1+g ')~']. (9)

The first term of (8) is the kinetic energy of a
normal gas, whereas the second is the increase
arising from the assumed distortion of the N-
particle (simple product) wave function. The
density of the gas can also be calculated directly,
and is

yk
= ge +(E (o )e -L~' g'+(E (u )'-, (5a)

ikx i (k -q)x

for 0 ~k ~ko and
where

p=(N/L)[1- G(g) cosqx],

G(g)= gln[g '+(1+g ') ].
ikx i(k+q)x

k k k

for -ko &k & 0. The energy Ep, appearing para-
metrically, is

Ek = —,'((ok+(u„) - [—,'(ar —(u„)'+g']~', (8)

for positive k, and the corresponding expression
with q =2ko replaced by -q for negative k. The
foregoing wave functions and energies are the
solutions of a single particle in a potential,

As surmised, the state has a static density wave.
This result together with (2) determines the in-
teraction energy:

V = -—,'pN(1+ 2G'). (12)

If F and t" are expanded in powers of g, it can
be made obvious that V will always decrease
faster than the increase of T near g=0. Actually,
the sum of (8) and (12) can be minimized without
approximation. The optimum g is

U = 4gE cos2k~x, (7) g = 1/sinh(4E /P). (13)

provided admixture of states with Ik I& 2ko is
ignored. (These are the wave functions and en-
ergies which arise in the weak-binding theory of
energy bands. The energy gap at +k, is 4gEF. )
The qualitative feature of the wave functions (5)
is that their square magnitudes have an oscilla-
ting component out of phase with the potential
(7), and give rise to a density wave which can in
turn yield (7) as the Hartree potential of the
attractive interactions. States corresponding to
Ik ~ &ko may be defined similarly, but should not

be occupied, since their square magnitudes
oscillate in phase with (7). This is the reason
why the wave number of the density wave should
equal the diameter, 2ko, of the Fermi surface.
(Only those states below the energy gap should
be filled. ) It can easily be proved that this choice
leads to the lowest total energy. But we must
first show that a Fermi sea filled with the states
(5) has lower energy than one filled with plane
waves.

The kinetic energy T of a Fermi gas filled with

The resulting change in total energy relative to
the normal state is

b, W= NE [coth(4E-/P) - 1]. (14)

This result is negative definite. It is also of in-
terest to note that if (10) and (13) are inserted
into (3), one obtains a constant term plus the
oscillating potential (7), the coefficient of the
latter being in agreement with (13). Consequently,
the N-particle wave function is a self-consistent
solution in the Hartree sense (states with ~k (& 2k,
being ignored). A further observation is that
within the field of variation employed here, the
"normal ground state" is an energy maximum.

The generalization to a three-dimensional gas
is almost trivial. In order to optimize the effect
of density waves, the occupied (unperturbed)
states should fill a cube in momentum space.
Three density waves will result, according to
(1), and there will be a large energy gap around
the surface of the Fermi cube. (The wave num-
ber q of the waves must equal the edge length of

416



VOLUME 4, NUMBER 8 P HYSI CAL REVI K%' LETTERS Apart 15, 1960

the cube. ) The single-particle wave functions
are merely the products of three factors, each
having the form (5). To a first approximation
each of the density waves can be treated inde-
pendently, and the analysis is identical to that
derived above. However, employment of an in-
teraction term such as (2) does not lead to an
equilibrium density for nuclear matter.

The energetics of nuclear density waves for a
model which exhibits nuclear saturation may be
explored easily with the method of Karplus and
Watson. ' According to their treatment, the bind-
ing energy per nucleon of the normal state is
(in Mev)

(16)i.2
[The physical origin of this term is of course the
penetration of the repulsive core by nucleons of
high relative momenta. The potential terms of
(15) and (2) are equivalent if J3 is allowed to have
this dependence. Nuclear saturation is thereby
guaranteed. ] The appropriate modification of
(15) to include the effects of three perpendicular
density waves is

B'= -
~ (1+SF)+ 0~ (1+~G2)~ 1- ~(1+~~E),

23

(17)

where E(g) and G(g) are as defined by (9) and
(11). For excitations near the Fermi surface,
the fractional increase in P is one half the frac-
tional increase in kinetic energy. Equation (17)
should first be minimized with respect to g. If
only linear terms in I' and G' are employed in
finding the optimum g, the result is analytic:

g= I/sinh8, (18)

B= - (28/q') + (V,/2q') [1-(Sn/10') ], (15)

where q is a radius parameter, q'= po/p, po being
the observed nuclear density. The parameters
Vo and n may be estimated from nucleon scatter-
ing experiments or, for our purposes, may be
chosen to yield the observed binding energy (-16
Mev) and density (r)-1) of nuclear matter. The
first term of (15) is the kinetic energy per nu-

cleon, and the second is the potential. The nega-
tive term in square brackets represents the de-
crease in attractive interaction associated with
the mean square relative momentum P of the
nucleons:

where

8 = (2760'+ Qn V,)/Vo(30rP - 9n). (19)

We have computed B and 8' vs g for various sets
of Vp and n. The set, Vo- 120 Mev, n - 1.4,
yields the observed density and binding energy
for B'. The extra binding energy (B' —Bm~)
attributable to the density waves is 4 Mev per
nucleon. The energy gap, gh~q'/2m, at the
Fermi surface is 30 Mev. The amplitude y of
each density wave is 0.6. These quantitative re-
sults are relatively insensitive to the values of
Vo and n. One may conclude that density waves
in nuclear matter are of great importance.

The foregoing arguments have the force of the
variational theorem. The density waves are so
large that the variational solution should be im-
proved appreciably by allowing states with wave
vector components greater than q to be mixed
into the single-particle wave functions. Also,
the optimum value of g will be different from the
crude estimate (18). Such refinements can only
enhance the importance of density waves and in-
crease their contribution to the binding energy.
In writing (17), we have neglected the 8% in-
crease in kinetic energy required to fill a cube
rather than a sphere in momentum space. Most
of this increase arises from filling the corners
of the cube. It seems likely that the cube will be
truncated by four smaller density waves parallel
to the [ill] type directions. The effect on the
three major density waves should be small, but
a major fraction of the 8 /o increase in kinetic
energy can thereby be eliminated.

In the limit of weak attractive interactions, the
Fermi surface will become a many-faced poly-
hedron, each pair of opposite faces arising from
a density wave. All single-particle states near
the Fermi surface will be essentially 100% per-
turbed compared to the normal state. It follows
that the low-energy states proposed in this paper
are not related to the normal state through a
perturbation expansion in the interaction constant.
The stability of static density waves arises from
the fact that the greater binding caused by density
fluctuations is achieved with less expenditure of
kinetic energy, when compared with a mere uni-
form compression of the normal state. This ob-
servation points out the inadequacy of the Fermi-
Thomas approximation for such considerations.

Glassgold, Heckrotte, and Watson' found that
nuclear matter is unstable with respect to com-
pressional collective modes. They assumed, of
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course, that the parentage of the true ground
state is the normal free particle state. The in-
terpretation of their result is now clear. Com-
pressional modes relative to a highly excited
"ground state" are unstable if they have sufficient
admixture of low-energy states, similar to those

considered here.
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A very significant feature of the Gell-Mann—
Pais particle mixture theory'&' is the regenera-
tion of the K1 from the K2 neutral meson. We
examine the three possible types of regeneration
and give the results of an experiment that exhibits
the expected transformations as demanded by the
theory. The experiment also allows an estimate
of the difference between the masses of K1 and
K2.

One of the three types of regeneration has been
described previously'. A plate inserted into a
parallel beam of K2 particles produces a parallel
beam of K1 particles. This phenomenon, which
we will henceforth call transmission-regenera-
tion, is in striking contrast with other known
processes whereby a particle transforms into
another one: a parallel beam of charged pions
obviously cannot produce a parallel beam of
neutral pions by interacting with a'plate.

Here we point out another process that typically
follows from the theory, namely the regeneration
by diffraction. Because the K' and the K' waves
are diffracted by a nucleus with different ampli-
tudes, the diffracted wave contains K1 as well as
K2 particles. Thus K1 mesons are regenerated
by a nucleus with a typical diffraction angular
distribution.

Regeneration of K1 can also occur by inter-
action of K2 with single nucleons. The angular
distribution of this nucleon-regeneration is
broad, not essentially different from that ob-
tained in K-nucleon scattering, and therefore
it is not a crucial consequence of the particle
mixture theory.

All three of these components will emerge from
a plate traversed by a parallel beam of K2's.
The angular distribution should permit one to
recognize each component separately.

Case and Good' have shown that the intensity
of the transmitted component is a very sensitive
function of the mean life 7, of the K1 and of the
difference 5m between the masses of K1 and K2.
The mass difference appears in the final expres-
sion because of the phase difference it introduces
between the K1 and the K2 waves, an effect which
was first noted by Serber' in connection with K'
production. Moreover, Good pointed out that the
intensities of both the transmitted and "scattered"
component (in the forward direction) are pro-
portional to lf»'i', f»' bei.ng the amplitude of
the regenerated K1, at zero angle, in a K2-
nucleus collision. Good's "Scattered" component
must be identified with the diffracted component
described above. Thus the intensity ratio of the
transmitted wave to diffracted wave is a function
only of 5m and v, . We derive here in a more
concise way the expression for this ratio.

The computation of the expected transmitted
and diffracted intensities can be greatly simpli-
fied by neglecting, from the start, the regenera-
tion of K2 from K1. As the nuxnber of K1's is
always less than one thousandth of the number of
K2's, this approximation is very good. We con-
sider then a plane wave of K2 particles, of wave-
length X, crossing our plate, which contains N
nuclei per cubic centimeter. If each nucleus
produces EC1's with a forward amplitude f„', an
infinitesimal thickness dx of the plate at depth x


