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Using data on the scattering of K mesons in
emulsion, ' together with data on the scattering
of K+ mesons by hydrogen' (T =1), we have in-
vestigated the K+-nucleon interaction in the
T =0 state. The method used requires only sim-
ple hand calculations and is believed to be quite
accurate at high energies. The emulsion data
of Zorn' are summarized in Table I. The K+ -p
data may be summarized in terms of the 8-wave
effective range expansion as follows':

k cot5 = -—+ —,k r,1 j. 2

c.m. 1 a, c.m. 1'

with a, =0.34 f, ry 0 50 f, where a, and r, are
accurate to about 10%.' For the energy region
under consideration here (incoming kinetic
energy less than 350 Mev), the K+ —p angular

distribution indicates that the T =1 phase shifts
for L ~1 may be neglected.

If we assume that the elastic scattering of K+
on nuclei is given by a complex square well
potential of depth V+iN', then in the %KB ap-
proximation one finds' for the total inelastic
scattering cross section:

2m -AR
o. =mR' ——,[1-e (1+zR)].inel (2)

Here R is the radius of the nucleus with
R =1.2A"'x10 "cm and X = 4EKW/-(klabS')
Equation (2) is valid when (V+iW)/EK «1 and

klabR»l. Equation (2) is, of course, averaged
over the representative elements of the emul-
sion. The total inelastic cross section then de-
termines A, and hence O'. The values of A. de-

Table I. The emulsion data of Zorn, a the quantities X and X, the K -nucleon phase shift parameters, and the
optical potentials derived from these data. TK is the average laboratory kinetic energy of the K meson in each
energy interval.
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0.36 + 0.06
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See reference 1.
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termined from the experimental data are given
in Table I. In the impulse approximation the
optical model potential is

exchange cross section in emulsion at high en-
ergy is

V'+ LW: 277Af (0)
c.m. K

(3)

emulsion
G =N'(z

C.X. C.X.

for a square well, where A. is the mass number
of the nucleus, kl b is the wave number in the
laboratory system, kc m is the wave number in
the K+-nucleon center-of-mass system, E~ is
the total laboratory energy of the K meson (in-
cluding rest energy), and f (0) is the forward
scattering amplitude in the K+-nucleon center-
of-mass system averaged over isotopic spin.
[Note that for R-A~' Eq. (3) is independent of
A. ] Thus

(4)

where the subscript denotes the isotopic spin
state, and n, =(A+Z)/2A, o., =(A -Z)/2A. If only
the 8-wave phase shifts need be considered for
T =1, and only the S- and P-wave phase shifts
for T =0,

i5~
e ' sin5„

c.m.

c.m.
(5)

Here 5, and Oo are the S-wave phase shifts in the
T =1 and 0 states, respectively, and ~0 2&are
the T =0, L =1 phase shifts for states of total
angular momentum J. In terms of these phase
shifts A, is

A. =k
C.Dl.

,{o., sin'5, +o., sin'5, +3a,p, ,), (6)

where

p 0 = -sin 50i + -sin 503.

If we assume that phase shifts for L ~ 2 may
be neglected in the T = 0 state, we may write the
total cross section for the charge-exchange re-
action, K++n-K'+p, as

1 i5 . i5 i 503f,(0) = (e 'sin5, +e» sin5»+2e» sin5»].

where ¹ is the average number of neutrons with
which the K meson may interact per emulsion
nucleus. If there were no attenuation of the in-
cident beam, we would have N' =N, the average
number of neutrons per emulsion nucleus. (In
the usual way we treat the nuclear emulsion as
a mixture of ¹Br:Agin the ratio 56:22:22, so
that N =27.2.) In general ¹ can be obtained by
multiplying the density of neutrons at position r
by the probability that the meson reaches r with-
out being scattered inelastically, and integrating
over all r. For a uniform medium this gives

3N
—

2~~g3 Oinel~ (10)

with ainel given by Eq. (2). The average value of
N'/N is about -', at these energies. Values of X
determined from the emulsion data are given in
Table I.

Equations (9) and (10) may be used because of:
(a) the incoherence of charge exchange scatter-
ing in nuclei; (b) the high incident kinetic energy;
and (c) the very small probability of multiple
charge exchange collisions. It turns out that the
mean free path for a charge exchange collision
in nuclear matter at the energies considered
here is greater than -10 f. There is also only a
very small probability that an inelastic non-
charge-exchange collision (involving a large
energy loss) will be followed by a charge exchange
collision because of the very rapid decrease of
the charge exchange cross section with decreas-
ing energy. Attenuation due to inelastic scatter-
ing may, of course, not be neglected. Compari-
son with the geometric cross section of the total
inelastic cross section and the charge exchange
cross section indicates readily why this is to be
expected, since 0.1 ~ crc x

m" s~on/mR' ~ 0.3
whereas 0.6 ~ oinel/nR' ~ 0.8, in the energy re-
gion under consideration. For the geometric
cross section we have used

0 1
=X = i [sin (5i - 5O) + 3 p, o] ~

4n c.m.

A good approximation to the total charge-

(8)

mR~ = m(1.2 f)2[0.22(108)@s+ 0.22(80)@3

+0 56(14)"']=556 mb. (11)

By inserting in Eqs. (6) and (8) the values of X

and X determined from experiment (Table I), we
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may solve for 5, in terms of 5,. The result is

k '[(R'/6A)A. —4n X] —o. sin'5
c.m.

sin(26, —6,) =
a sin5

(12)

This gives the values for 5, quoted in Table I.
These values for 5, are consistent with the form

5 = -k a, with a = -0.080+0.068 f, (13)
0 c.m. 0'

k ' cot 5 = -(1/a )',
C.m.

(14)

we find

lg I =0.44+0.03 f.
OP

To determine the individual P-wave phase
shifts, one can use the real part of the optical
potential, which can be written as the sum of an
S-wave and a P-wave part. Thus

V =I'[u sin25 +u sin26 ],S

V = I'n [sin25 +2sin25 ],P

I
4ps gK c.m.

(15)

The values of V5 obtained using Eqs. (1) and (13)
are given in Table I. If the optical model poten-
tial were known, VP could be found and the two
P-wave phase shifts determined by solving Eqs.
(7) and (15) simultaneously. From the present

where a, has been obtained by a least-squares
fit. We may then solve Eqs. (6) and (8) for p,
These values also appear in Table I. It should
be noted that the errors in 5, and p, , are cor-
related. The independent experimental param-
eters are g;„ I and P (Ta.ble I), so tha, t X a,nd X
are correlated; these depend on both 5p and p'p.

The result is a strong correlation between the
errors in 5, and p., so that a small value of p, ,
will be associated with a large value of 6„and
vice versa.

To get some idea of the magnitude of the P-wave
phase shifts, we may write p, O=sin26OP, where

50P is an "average" P-wave phase shift. (In the
absence of spin-orbit splitting, 50P is the P-
wave pha. se shift. ) If we fit 60P to the form

experimental values, '

V+ iW = [20.7 + 2.3 - (7.9 + 1.2)i] Mev

at T~=150 Mev and'

V+iW = [ 22 + 6 —(19.3 + 2.0)i] Mev

at T&=260 Mev, we would conclude that VP is
small (indicating a large spin-orbit splitting)
and repulsive. However, there is great uncer-
tainty in the value of the optical model potential
determined from experiment, so that these con-
clusions are subject to considerable doubt. Fur-
ther, there is some indication from a compari-
son of inelastic scattering at low energies with
Monte Carlo calculations [see, for instance,
M. Grilli et al. , Nuovo cimento 10, 205 (1958)]
that the K -nucleon cross section has a signifi-
cant backward peaking, implying an attractive
P-wave amplitude. Future improvements in the
elastic scattering data, with consequent improve-
ment in the optical model parameters, and im-
provements in the analysis of low-energy data,
may help to resolve this disagreement.
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To (sg)u2 m 53(r) (2)

where rno is the bare mass of the particle and
5'(r) is invariantly defined in three-space as a

The infinite mass self-energy difficulties of
quantum field theory already occur, as is well-
known, in the corresponding classical theories.
Although cutoffs may be introduced to effect re-
normalization in both the classical and quantum
cases, such procedures are physically unsatis-
factory. We wish to point out in this note that at
least for the static (Coulomb-type) contribution,
one obtains finite results for the classical self-
energies if the gravitational contribution to the
total energy is included. Furthermore, it will
be shown rigorously (in the static case) that the
natural cutoff furnished by general relativity
implies that all the mass of a point charge arises
from its total self-field and that a neutral par-
ticle has no mass.

It has previously been shown' that the energy
of the gravitational field is given by'

E= . . . -g. . . dS.,v, ~ g~~,
~ ~ ~ ~

where dSz is a two-dimensional surface element
at spatial infinity. When point particles or other
fields (such as the electromagnetic field) are
coupled to the gravitational field, Eq. (1) repre-
sents the total energy of the combined system. '
We begin by considering the metric field arising
from the coupling of a neutral static point par-
ticle. In isotropic coordinates [gt&

= y4(r)5t&] the
relevant field equation is

scalar density, ' i.e. , f5'(r)d'x = 1. The solution
of Eq. (2) which is asymptotically flat is seen to
be

y(r) = 1+mo/[32zry(0)]. (3)

The parameter m =-mo/y(0) is given in terms of
mo by

m = lim 2mo[1+ (1+mo/8we)~2] '.
&-0

(4)

In Eq. (4), e is essentially the "radius" of the
5' function. This relation between m and mo is
a consequence of explicitly considering the
source term in Eq. (2). From Eq. (1) one sees
that E =m. That this energy is to be correctly
interpreted as the total mass of the particle fol-
lows from the fact that an isotropic time-sym-
metric metric possesses no dynamical gravita-
tional modes. ' Thus E represents the mass of a
gravitationally clothed one-particle system (and
no dynamical gravitational excitations). From
Eq. (4) then, this total mass approaches zero as
(32mmoe)~. The gravitational self-mass for a
neutral particle therefore cancels the bare mass
m, . The physical origin of this result (m = 0) is
connected to the well-known fact that there is an
upper limit, in general relativity, to the amount
of energy that can reside in a given region. As
the size of the particle (here e) goes to zero its
mechanical energy content must vanish. We may
note that the (incorrect) weak-field result for
the self-mass could be obtained from Eq. (4) by
taking the limit m, small before letting c tend to
zero. Here one would find m =mo - —,

' mo'/e+ 0(1/e'),
the standard linearly infinite Coulomb-type self-
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