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The question of the trapping of particles in
cusped magnetic containment configurations has
been recently examined.! The purpose of this
Letter is to make accessible and extend certain
early results which bear on this problem.? The
trapping problem is, clearly, very closely re-
lated to the question of containment. The latter
problem has been treated in some detail for the
cusped geometry?® (high =2up/B?) and to a
lesser extent for the picket fence* (low 8). The
possibility of creating a cusped plasma by in-
jection using a plasma gun has been described
several times® and has been tried experimentally
on a small scale with inconclusive results.®

The mechanisms are different for trapping of
a single particle (i.e., a low-8 stream) or a high-
B cohesive plasma burst; we consider first the
simpler single-particle mechanism (this has
been termed impossible; see reference 1).

We consider a two-dimensional cusped con-
figuration as shown in Fig. 1. In this simplified
model the magnetic field is assumed to be totally
excluded and a particle orbit consists of straight-
line segments joined by helical arcs. Sufficiently
close to a cusp, the orbit has the adiabatic in-
variant” (see Fig. 1 for notation),

u* = 2mod +1m*(0? +w?) /e B. (1)

The value of u* will be essentially constant
while a particle is close to a cusp, but it will
change its value when the particle crosses the
device and approaches a second cusp. The sim-
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FIG. 1. Two-dimensional cusped geometry.
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plest containment theory® is based on the assump-
tion of a complete loss of memory on traversing
the apparatus. In other words, the distribution
function of particles approaching a cusp is Max-
wellian without any gap in a loss-cone. A re-
finement of this theory takes into account a
certain amount of persistence in two successive
values of ©*.? Turning to the injection problem,
we see that a complete loss in memory of the
value of u* yields complete trapping of all in-
jected particles. They will enjoy a lifetime
which is, on the average, the same as that of
any particle in the plasma, whether recently
injected or not. It is only those particles with a
good memory which cross to the opposite cusp
and escape after but a single transit.

A simple computation of this persistence effect
(based on a calculation of the last encounter made
with the original cusp before crossing to the
opposite side) shows that all particles are trapped
which are injected within a “trapped zone” (see
Fig. 1) of width

1/2
26=2)\(1-I%%Ma , (2)

where x=m(v? +w?)Y?/eB is the Larmor radius
and M =u/(v? +w?)"? is the injection “Mach num-
ber.” To be trapped, the guiding center of an
approaching particle should be within a distance
0 of the cusp axis. With A/L fixed, there are no
trapped particles when M is sufficiently large.
The maximum width of the trapped zone is twice
the Larmor radius. For most efficient trapping,
the beam width should not exceed the Larmor
radius. This formula is an approximation which
is valid when either M or L/x is large.

A similar (but much more intricate) analysis
can be performed for the case of axial injection
through a point cusp in a three-dimensional
geometry (Fig. 2). The maximum size of the
trapped zone is in this case a disk of area 76?
~La; this area has the same order of magnitude
as the total trapping area offered by the line-
cusp which can be analyzed two-dimensionally as
above. An appreciable fraction of those particles
which approach the point cusp within the distance
6 will be trapped provided that M =u/(v? +w?)?
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FIG. 2. Three-dimensional cusped geometry.

is smaller than some numerical factor times
(L/X)7/6.

The problem of computing the trapping of a
high-g plasma burst which can alter the mag-
netic field is much more difficult. A simple
fluid -like theory can be developed for the smooth
motion of a plasma in a magnetic channel.® If
we are guided by the similar problem in ordinary
fluid dynamics, we can expect complicated phe-
nomena such as shocks (as in a diffuser with
supersonic entrance velocity), jet detachment
(since the magnetic walls curve away sharply),
vortices in the dead space surrounding the jet.
Peculiar to the magnetic channel problem, it
has been shown that there is no stable transition
between subsonic and supersonic regions.® Thus
the entry of the plasma into the low-field region
is a complex matter. At the far end, one cannot
conclude (as is done in reference 1), merely
from the fact that the magnetic pressure is
higher than the energy density in the beam, that
the beam will be turned back. For one thing,
in the direction parallel to the magnetic field,
the Maxwell stress is a tension, not a pressure.
It is easy to construct flows of arbitrarily low
energy density which can pass through a mirror
region, and there is reason to believe that an
energetic supersonic jet of this type can be stable.®

Theoretical analysis of this entire problem
would be a huge task. Fortunately, certain sim-
ple experimental expedients should guarantee a
large degree of trapping. For example, the
cusped configuration can be made slightly asym-
metric by misaligning the two coils. The in-
coming jet will then miss the opposite cusp and

be trapped. Or else, two streams can be in-
jected from opposite ends.'® It should be re-
marked that a certain amount of trapped trans-
verse magnetic field in the jets is helpful to
make them collide instead of passing through one
another as has been observed with “plasmoids.”
Otherwise one might be able to depend on the
“two-stream? instability to break up the jets.
Again, too much symmetry is undesirable since
it might lead to a spurt sideways through the
cusped diametral plane, but a slight misalign-
ment (either in direction or in timing) would
probably mitigate this effect.

Generally speaking, trapping is apt to be quite
efficient in any apparatus with a large approxi-
mately field-free region (even in a mirror
machine®), especially if there is no high degree
of symmetry. It is possible that both the high-8
and low-8 injection techniques could prove to be
useful, the first to create a plasma and the
second to maintain it against cusp losses for the
required time.
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