G. W. Ludwig and H. H. Woodbury for communicating their results to us.

[†]Work performed under the auspices of the U.S. Atomic Energy Commission.

¹G. J. Perlow, S. S. Hanna, M. Hamermesh,

C. Littlejohn, D. H. Vincent, R. S. Preston, and

J. Heberle, Phys. Rev. Letters $\underline{4}$, 74 (1960).

 $^2J.\ P.$ Schiffer and W. Marshall, Phys. Rev. Let-

ters 3, 556 (1959).

³R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Letters 3, 554 (1959).

⁴S. S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S. Preston, and D. H. Vincent, Phys. Rev. Letters 4, 28 (1960).

⁵G. DePasquali, H. Frauenfelder, S. Margulies, and R. N. Peacock, Phys. Rev. Letters 4, 71 (1960).

⁶G. W. Ludwig and H. H. Woodbury, Phys. Rev. (to be published).

GAMMA WIDTH IN Be⁸ PERTINENT TO A TEST OF THE CONSERVED VECTOR CURRENT THEORY^{*}

Dieter Kurath Argonne National Laboratory, Lemont, Illinois (Received January 21, 1960)

In a recent experimental test¹ of the conserved vector current theory of β decay it was found that the predicted ($\beta - \alpha$) angular correlations are not observed in nuclei of mass 8. The only way this might happen and still be consistent with the theory is for the *M*1 transition width Γ_{M1} to be anomalously small between the states (J=2, T=1) and (J=2, T=0) in the nucleus Be⁸.

The quantity Γ_{M1} enters into the predicted asymmetry coefficient for the $(\beta - \alpha)$ correlation in the form $(\Gamma_{M1})^{J/2}$. Since the (J=2, T=1) level decays by α emission rather than γ emission, Γ_{M1} is not known experimentally. In the prediction² of the $(\beta - \alpha)$ asymmetry, a probable width of $\Gamma_{M1} = 0.15$ Weisskopf unit ≈ 8 ev was assumed.

In those cases in which a comparison has been made between experiment and calculations with the intermediate-coupling model, it is found that the computed M1 widths are fairly reliable. The results of calculating the Γ_{M1} pertinent to the present experiment with intermediate-coupling functions are given in Table I. Since other evidence³ suggests that for Be⁸ the intermediatecoupling parameter (a/K) lies between 2.0 and 2.5, the calculation indicates that

$$\Gamma_{M1} \approx 3$$
 to 5 ev.

Table I. Gamma transition width Γ_{M1} for the (J=2, T=1) to (J=2, T=0) transition in Be⁸ as a function of the relative strength of spin-orbit coupling, a/K.

a/K	0	1.5	3.0	4.5	6.0
Γ_{M1} (ev)	0	2.0	7.4	14.8	23.4

Such a value would multiply the predicted asymmetry in the $(\beta - \alpha)$ correlation by about 0.7, and thereby give a theoretical estimate of about +0.10, where the sign is determined by the positive sign of the computed matrix element. The experimental result¹ is +0.02 \pm 0.04. Therefore the present calculation indicates that the discrepancy between experiment and the conserved vector current theory of β decay is real.

Work performed under the auspices of the U.S. Atomic Energy Commission.

¹M. E. Nordberg, B. Povh, and C. A. Barnes, Phys. Rev. Letters 4, 23 (1960).

²J. Bernstein and R. R. Lewis, Phys. Rev. <u>112</u>, 232 (1958).

³D. Kurath, Phys. Rev. <u>106</u>, 975 (1957); Phys. Rev. Letters <u>3</u>, 431 (1959).