scattering or other dissipative processes do not seem to be of importance, i.e., that the N/Z mode is not overdamped like the mass-transfer mode. Also, the now available experimental evidence and theory¹⁰ agree in that the characteristic times for N/Z relaxation depend only weakly on the size of target and projectile.

¹J. Galin, J. Phys. (Paris), Colloq. <u>37</u>, C5-83 (1976). ²B. Gatty, D. Guerreau, M. Lefort, X. Tarrago,

J. Galin, B. Cauvin, J. Girard, and H. Nifenecker, Nucl. Phys. A253, 511 (1975).

³J. R. Huizenga, J. R. Birkelund, W. U. Schröder, K. L. Wolf, and V. E. Viola, Phys. Rev. Lett. <u>37</u>, 855 (1976).

⁴W. Nörenberg, Phys. Lett. <u>B52</u>, 289 (1975), and Z.

Phys. <u>A274</u>, 241 (1975).

^bJ. V. Kratz, J. O. Liljenzin, A. E. Norris, and G. T. Seaborg, Phys. Rev. C <u>13</u>, 2347 (1976).

⁶J. V. Kratz, W. Brüchle, I. Dreyer, G. Franz, G. Wirth, M. Schädel, and M. Weis, in *Communications* to the European Conference on Nuclear Physics with Heavy Ions, Caen, France, 1976, edited by B. Fernandez, S. Harar, J. C. Jacmart, and J. Péter (European Physical Society, Petit Lancy, Switzerland, 1976), p. 175.

⁷J. V. Kratz, H. Ahrens, W. Brüchle, G. Franz, M. Schädel, I. Warnecke, G. Wirth, G. Klein, and M. Weis, to be published.

⁸M. Boloré, R. Lucas, H. Nifenecker, J. Poitou, W. Brüchle, Y. Eyal, G. Franz, J. V. Kratz, and G. Wirth, Gesellschaft für Schwerionenforschung Report No. GSI-J-77, 1977 (unpublished), p. 48.

³Modified version of the code ALICE (W. Reisdorf, private communication).

¹⁰U. Brosa and H. J. Krappe, to be published.

Observation of the Proton-Pairing Vibration in ²⁰⁶Pb

R. E. Anderson, P. A. Batay-Csorba, R. A. Emigh, E. R. Flynn,^(a) D. A. Lind, P. A. Smith, and C. D. Zafiratos

Nuclear Physics Laboratory, Department of Physics, University of Colorado, Boulder, Colorado 80309

and

R. M. DeVries

Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627 (Received 14 July 1977)

The $({}^{3}\text{He},n)$ reaction was studied at an incident beam energy of 33.3 MeV for targets of ${}^{204}\text{Hg}$ and 204 , 206 , ${}^{208}\text{Pb}$. A 0⁺ state at 4.1 ± 0.1 MeV in ${}^{206}\text{Pb}$ was excited with 70% of the cross section of the ${}^{206}\text{Pb}({}^{3}\text{He},n){}^{208}\text{Po}(\text{ground state})$ transition. This state lies at the predicted excitation energy of the proton-pairing vibration when particle-hole interactions are included.

Many nuclear phenomena can be described in terms of the coupling of three elementary modes of excitation: the single-particle, rotation-vibrational, and pairing modes. In heavier nuclei the first two modes have been well investigated experimentally by single-particle transfer and inelastic scattering. The pairing mode has also received considerable attention, with regard to the neutron degree of freedom, by the use of (t, p)and (p, t) reactions. The data around ²⁰⁸Pb are in good agreement with a simple pairing vibrational model.¹ Indeed, all of the nuclear excitations investigated in the vicinity of ²⁰⁸Pb appear to be well described by elementary modes. However, one important ingredient is missing. There exists no observation of excited proton-pairing 0⁺ states or a systematic study of ground-state proton-pairing correlations for Z=82. Further, there has been recent interest in the possibility of α vibrations,² which are correlated four-particle, four-hole states analogous to the two-particle, two-hole proton- or neutron-pairing vibrations. The search for these α vibrations in the lead region³ requires knowledge of the excitation energy of the previously unobserved proton-pairing vibration. The present Letter reports for the first time the observation of an excited protonpairing vibrational 0⁺ state in lead nuclei. Measurements of the appropriate differential cross sections and excitation energies permit a direct comparison to the harmonic pairing-vibration model.

Two-nucleon transfer reactions on targets with two nucleons less than a closed shell tend to popVOLUME 39, NUMBER 16

ulate an excited $J^{\pi} = 0^+$ state very strongly.¹ The pairing vibrational model^{4,5} considers this state to be an elementary mode of excitation of the nucleus. In this model two particles coupled to spin zero outside a closed shell are treated as an addition quantum while two holes coupled to spin zero form a removal quantum. The excited state is viewed as an addition quantum plus a removal quantum and is called a pairing vibration. This model, in a purely harmonic approximation which neglects interactions between quanta, predicts that a two-nucleon transfer reaction leading to the pairing vibration will have the same Q value and cross section as the same reaction to the ground state on the closed-shell target. These predictions have been verified for (t, p) reactions near the neutron closed shells at $N = 20,^{6} 28,^{7}$ $50,^{8,9}$ 82,¹⁰ and 126.¹¹ When only the neutron shell is closed, the pairing vibration is often fragmented into a few states whose energy centroid and summed cross sections are in reasonable agreement with the harmonic pairing-vibration model.

The analogous proton-pairing vibrations have been studied less extensively because of experimental difficulties in the study of the (³He, *n*) reaction. Systematics similar to those for the (t, p)reaction have been observed in (³He, *n*) near Z = 20^{12} and Z = $28.^{13,14}$ Recently (³He, *n*) studies have been extended to the Z = 50 shell closure¹⁵ and have shown that, as in the neutron case, the pairing vibration is fragmented, although its summed strength agrees with the pairing-vibrational model.

The present work reports the observation of a strongly excited 0⁺ state in the reaction ²⁰⁴Hg(³He, n)²⁰⁶Pb. Unfortunately, the doubly closed-shell nucleus ²⁰⁸Pb could not be investigated because the isotope ²⁰⁶Hg is not stable. However, the reaction ²⁰⁴Hg(³He, n)²⁰⁶Pb leads to the same closed Z = 82 shell, and a measurement of the pairing vibration here can indicate the position of such a state in ²⁰⁸Pb as will be shown below.

The data reported here were obtained with the University of Colorado rotating-beam neutron time-of-flight spectrometer¹⁶ at an incident beam energy of 33.3 MeV. The experimental setup is described by Fielding *et al.*¹⁷ although in the present work a small magnet was placed in the scattering chamber to deflect the ³He beam after it passes through the target to allow observation of neutrons at small angles. The isotopically enriched mercury targets were in the form of HgO deposited on isotopically enriched ²⁴Mg backing to avoid interference from the reaction ¹³C(³He,

FIG. 1. Neutron time-of-flight spectra obtained at 4° for ²⁰⁶Pb and ²⁰⁴Hg targets. Increasing time is toward the left so that neutron energies increase toward the right. Time per channel is approximately 0.2 ns. Resolution is dominated by target thickness and corresponds to an energy resolution of about 500 keV.

n)¹⁵O which occurred when carbon backings were used.¹⁸

Neutron time-of-flight spectra are shown in Fig. 1 for ²⁰⁴Hg and ²⁰⁶Pb targets. Figure 2 shows angular distributions for the ground states and the strongly excited state in ²⁰⁶Pb along with distorted-wave Born-approximation (DWBA) calculations using ³He parameters from set A of Erb and Gray¹⁹ and neutron parameters from Becchetti and Greenlees²⁰ using the code DWUCK4.²¹ The two-proton form factor was obtained by the method of Bayman and Kallio²² assuming that the single-proton binding energy was one-half of the two-proton separation energy, taking into account the excitation energy of the residual nucleus. The height and position of the second maximum in the L = 0 DWBA predictions shown in Fig. 2 are strongly affected by the choice of the neutron optical potential. However, all parameter sets tried agree in the shape of the strong forward maximum which is a unique feature of L = 0 transitions.

FIG. 2. Angular distributions for the ground state and the strong excited state seen with a 204 Hg target. Also shown is the ground-state transition seen with the 206 Pb target. The solid curves result from DWBA calculations described in the text. The small amount of L = 2 transfer shown for the 4.1-MeV state merely illustrates that unresolved higher-J states would not appreciably affect the assigned L = 0 strength.

The cross sections given in Fig. 2 are based on a monitor counter which was fixed at 40° in the scattering chamber. It was assumed that the ³He elastic scattering from Pb, Hg, and Pt at 40° scales as predicted by the ³He optical model of Ref. 19. Several other ³He parameter sets gave the same results. A ¹⁹⁶Pt target, whose thickness was determined to be 4.2 mg/cm^2 by weighing and by α -paritcle energy-loss techniques, was used to normalize the ²⁰⁴Hg and ²⁰⁶Pb data with the above assumption. The $^{\rm 206}{\rm Pb}$ target thickness was independently measured by α energy loss and found to agree with the monitor counter determination. The Hg and Pb cross sections are estimated to have an absolute uncertainty of 15%. As seen in Fig. 2 the cross section for formation of the ²⁰⁶Pb pairing vibration is $\sim 70\%$ of the ²⁰⁸Po ground state (g.s.). This is a deviation of 30% from the prediction of the pairing-vibration model. An additional peak at 2.4 MeV is weakly populated by a mixture of L = 0 and L = 2transfer. The L=0 member of this doublet contains about 12% of the ²⁰⁸Po(g.s.) strength.

Additional measurements were made for ²⁰⁴Pb and ²⁰⁸Pb targets and the cross sections to the

^{206,210} Po ground states were equal to that of the ²⁰⁸ Po ground state, within the 15% experimental error, indicating that neutron holes have little effect on the proton transfer cross section.

The excitation energy of the strongly excited state seen in the reaction 204 Hg(3 He, n) 206 Pb is 4.1 ± 0.1 MeV and this excitation energy is taken as the location of the proton-pairing vibration in spite of the fact that this state contains only 70%of the expected strength. If the 2.4-MeV state is assumed to be a fragment of the pairing vibration, then 82% of the strength is located and a centroid energy of 3.85 MeV is obtained. However, if any additional strength lies at higher excitation it would tend to move the centroid to higher excitation. Such strength would be missed in the present measurements because of neutrons from the ²⁴Mg backing. A prediction of this centroid may be made by taking the difference of the ²⁰⁸Po and ²⁰⁶Pb ground-state two-proton separation energies and then correcting for particlehole interactions.²³ The difference in the twoproton separation energies is 5.40 MeV. The particle-hole correction is four times the particlehole interaction²³ of 324 keV and is principally due to the Coulomb contribution. This correction has been verified previously for the Z = 50 shell closure.²⁴ Such corrections are usually ignored in the neutron case because of the absence of the dominant Coulomb contributions. With use of the above procedure, an excitation energy of 4.1 MeV is predicted for the proton-pairing vibration in ²⁰⁶Pb.

This agreement between predicted excitation energy and observed energy indicates that a prediction of the proton-pairing vibration of ²⁰⁸ Pb may be made. Using a similar procedure a value of 5.3 MeV is suggested for ²⁰⁸ Pb. This is in excellent agreement with the excitation energy of a weak 0⁺ state seen at 5.236 MeV in the reaction ²¹⁰ Pb(p, t)²⁰⁸ Pb.¹¹ This state has been interpreted by Blomqvist²³ as the proton-pairing vibration, although experimental verification of this interpretation has been lacking heretofore. The present experimental results indicate that, when corrected for the particle-hole interaction, the harmonic pairing-vibration model for ²⁰⁸ Pb correctly describes the excited proton-pairing state.

The authors wish to thank Mr. Greg Smith for assistance in data acquisition. This work was supported in part by the U. S. Energy Research and Development Administration and the National Science Foundation. ^(a)Permanent address: Los Alamos Scientific Laboratory, Los Alamos, N. M. 87545.

¹R. A. Broglia, O. Hansen, and C. Riedel, in *Advances in Nuclear Physics*, edited by M. Baranger and E. Vogt (Plenum, New York, 1973), Vol. 6.

²R. A. Broglia and P. F. Bortignon, Phys. Lett. <u>65B</u>, 221 (1976).

- ³R. M. DeVries, D. Shapira, M. R. Clover, H. E. Gove, J. D. Garrett, and G. Sørenson, Phys. Lett.
- 67B, 19 (1977).

⁴A. Bohr, in *International Symposium on Nuclear* Structure, Dubna, 1968 (International Atomic Energy Agency, Vienna, 1969), p. 179.

⁵B. F. Bayman, D. R. Bes, and R. A. Broglia, Phys. Rev. Lett. 23, 1299 (1969).

⁶J. H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman, S. Hinds, and R. Middleton, Nucl. Phys. <u>A103</u>, 33 (1967).

⁷R. F. Casten, E. R. Flynn, O. Hansen, and T. J. Mulligan, Phys. Rev. C $\underline{4}$, 130 (1971).

⁸R. C. Ragaini, J. D. Knight, and W. T. Leland, Phys. Rev. C 2, 1020 (1970); J. B. Ball and J. S. Larsen,

Phys. Rev. Lett. 29, 1014 (1972); J. S. Larsen, J. B.

Ball, and C. B. Fulmer, Phys. Rev. C 7, 751 (1973).

⁹E. R. Flynn, J. G. Beery, and A. G. Blair, Nucl.

Phys. A218, 285 (1974).

¹⁰J. B. Ball, R. L. Auble, J. Rapaport, and C. B. Fulmer, Phys. Lett. <u>30B</u>, 533 (1969).

¹¹G. Igo, P. D. Barnes, and E. R. Flynn, Ann. Phys.

(N. Y.) <u>66</u>, 60 (1971).

¹²D. Evers, W. Assmann, K. Rudolph, S. J. Skorka,

and P. Sperr, Nucl. Phys. <u>A198</u>, 268 (1972); D. Evers, W. Assmann, K. Rudolph, S. J. Skorka, and P. Sperr, Nucl. Phys. A230, 109 (1974).

¹³W. P. Alford, R. A. Lindgren, D. Elmore, and R. N. Boyd, Nucl. Phys. A243, 269 (1975).

¹⁴H. W. Fielding, R. E. Anderson, F. M. Edwards, D. A. Lind, and C. D. Zafiratos, to be published.

¹⁵H. W. Fielding, R. E. Anderson, C. D. Zafiratos, D. A. Lind, F. E. Cecil, H. H. Wieman, and W. P.

Alford, Nucl. Phys. A281, 389 (1977).

¹⁶D. A. Lind, R. F. Bentley, J. D. Carlson, S. D.

Schery, and C. D. Zafiratos, Nucl. Instrum. Methods 130, 93 (1975).

¹⁷H. W. Fielding, R. E. Anderson, D. A. Lind, C. D. Zafiratos, and W. P. Alford, Nucl. Phys. <u>A269</u>, 125 (1976).

¹⁸R. E. Anderson, P. A. Batay-Csorba, E. R. Flynn, D. A. Lind, P. A. Smith, C. D. Zafiratos, and R. M.

DeVries, Bull. Am. Phys. Soc. 22, 635 (1977).

- ¹⁹Karl A. Erb and Walter S. Gray, Phys. Rev. C <u>8</u>, 347 (1973).
- ²⁰F. D. Becchetti and G. W. Greenlees, Phys. Rev. <u>182</u>, 1190 (1969).

²¹P. D. Kunz, private communication.

²²B. Bayman and A. Kallio, Phys. Rev. <u>156</u>, 1121 (1967).

²³J. Blomqvist, Phys. Lett. 33B, 541 (1970).

²⁴E. R. Flynn and P. D. Kunz, Phys. Lett. <u>68B</u>, 40 (1977).

Island of High-Spin Isomers near N = 82

J. Pedersen, B. B. Back,^(a) F. M. Bernthal,^(b) S. Bjørnholm, J. Borggreen, O. Christensen, F. Folkmann, B. Herskind, T. L. Khoo,^(a) M. Neiman, F. Pühlhofer, and G. Sletten Niels Bohr Institute, Risø, DK-4000 Roskilde, Denmark, and Gesellschaft für Schwerionenforschung, D-6100 Darmstadt, Germany (Received 11 July 1977)

Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than ~ 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region $64 \leq Z \leq 71$ and $N \leq 82$.

Interest in the structure of nuclei at very high angular momentum has been stimulated by the growing availability of heavy-ion beams. Bohr and Mottelson¹ proposed some time ago that one manifestation of special structure effects in nuclei with high spin could be the occurrence of yrast traps. At high angular momenta, some nuclei may become oblate and are expected to carry angular momentum most efficiently not by collective rotation, but rather by successive alignment of particle spins along the symmetry axis. The yrast states will, on the average, have a rotationallike dependence of energy on spin with a mean effective moment of inertia equal to that of a rigid body rotating about the oblate symmetry axis. However, deviations from the mean, enhanced by shell effects, may cause such large irregularities in the yrast sequence of energies that yrast isomers can occur. In addition, since transition probabilities between such states are determined by single-particle matrix elements, isomers may occur by virtue of selection rules for single-particle transitions.

A number of groups have performed detailed