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curate values, as we have verified, for instance,
on the calculation of the ground-state energy of
the anharmonic oscillator where, for an interme-
diate coupling, the accuracy is, for six terms of
the perturbation series, of the order of 10 ' for
the Pads method, 10 ' for the Pads-Borel meth-
od, and 3 &10 4 for our method. Second, to im-
prove efficiently the rate of convergence of a ser-
ies by means of the Pads-Borel method, the per-
turbation series has to alternate in sign. This
condition is not crucial in our approach. This is
particularly important in the calculation of criti-
cal exponents from y' field theory in three di-
mensions, where Baker et al. ' only used 1/y(g)
and t), (g) -=W(g)(d/dg)ln[Z&» (g)], whose series al-
ternate in sign, the other critical exponents being
obtained by scaling relations. With our method,
we could calculate all exponents independently.

We are extremely grateful to G. A. Baker, B. G.
Nickel, and D. I. Meiron for communicating to
us, prior to publication, the Taylor series listed
in Table I. We especially thank B. G. Nickel for
correspondence concerning these numbers.
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Applying the same method for d = 2 and n = 1 (Ising

model) we have found g*=1.85+0.07, @=1.79+ 0.07,
g =0.19+0.07, v=0.98+ 0.07, and & =1.1+0.8. In this
case the perturbation series has only been calculated
(Ref. 8) up to order 5 for 11 (g) and to order 4 for the
other functions.
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An intinerant-electron model for ultrasonic propagation in a ferromagnetic metal, for
both above and below the Curie temperature Tc, is developed within the mean-field ap-
proximation. The attenuation maxima of the longitudinal acoustic wave are shown to oc-
cur at slightly below T& in agreement with the experimental observation on Ni. In addi-
tion, new possibilities of magnetically driven structural instabilities in metals are point-
ed out.

The ultrasonic method has been used extensive-
ly in studying ferromagnetic substances. ' Most
of the previous theoretical treatments' of the ul-
trasonic propagation, however, are based on the
localized-spin model for ferromagnetism. In this
Letter I develop a simple itinerant-electron mod-

el for the ultrasonic behavior of a ferromagnetic
metal.

In discussing the lattice vibrations of a metal,
either magnetic or nonmagnetic, it is most irn-
portant to consider the screening of the ion-ion
interaction by the conduction electrons. ' I pursue
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how the screening behavior and, accordingly, the
velocity and attenuation of ultrasound change with
the magnetic properties in an itinerant-electron
ferromagnet. In this way it was found4 recently
that in the paramagnetic state of the jellium mod-
el the ultrasonic attenuation is directly propor-
tional to the spin susceptibility. Thus it was con-
cluded that the observed maxima of ultrasonic at-
tenuation near the ferromagnetic Curie point T c
are caused by the divergence of the paramagnetic
spin susceptibility at Tc.

In the present Letter I extend an earlier study'
(1) beyond the jellium model and (2) into the fer-
romagnetic state below T C. With these exten-
sions I find, quite surprisingly, that the origin of
the attenuation maxima is entirely different from
what was anticipated in Ref. 4. What is responsi-
ble for the attenuation maxima is the sensitive
magnetization dependence of the dynamic screen-
ing behavior below IC,' the maxima occur slightly
below T~, not at Tc, in agreement with the obser-
vation on Ni. ', Further, in addition to the struc-
tural instability in the paramagnetic state noticed
earlier, 4 another new structural instability in the
ferromagnetic state is found.

In this Letter I concentrate on the longitudinal
acoustic wave of a ferromagnetic metal. With the
mean-field approximation, including the effect of
the exchange interaction between electrons, the
phonon frequency &, with wave number q, both
above and below the Curie point Tc, is obtained
from the following relation4:

~,' = [~,'- I g(q) I'/V(q)]

Ig(q) I'/V(q)
1+V(q)[$',(q, ~,) +5'(q, ~,) J

'

where 0, is the bare phonon frequency, g(q) is
the electron-phonon interaction, ' V(q) (=4~e'/q',
for plane-wave states) is the Coulomb repulsion
between electrons, and F, (q, ~) =F, (q, &v)/[1- V(q)
XF, (q, &u)] are the exchange-enhanced I indhard
response functions' of plus or minus spin elec-
trons with V(q) the effective exchange interaction
between electrons. ' Note that in the paramagnet-
ic state F+(q, &u) =F (q, ~) =F(q, u&), and that the
familiar exchange-enhanced paramagnetic spin
susceptibility is given as g (q, ~) =2F(q, ~)/[1
—V(q)F(q, ur)] (with pq'=1).

How I derive the basic result of Eq. (1)' may be
evident from the following: If one notes that in
the jellium model' fl,' = Ig(q) I'/V(q) =&~', where

~ is the ionic plasma frequency, the first term
on the right-hand side of Eq. (1) can be naturally
identified as the contribution of the deviation from
the simple Coulombic ion-ion interaction. The
second term, on the other band, gives the contri-
bution of the Coulombic part of the ion-ion inter-
action; the denominator represents the dynamicai
screening processes by the electrons. If the ex-
change interaction between electrons is not con-
sidered, the screening constant will take the fa-
miliar form of 1 + V(q) [F,(q, ~) + F (q, &)1. Inclu-
sion of the exchange effect replaces the Lindhard
functions F,(q, ~) by the exchange-enhanced ones
F,(q, ~). Note that for the paramagnetic state and
without the exchange effect Eq. (1) reduces to the
familiar result. '

Starting with Eq. (1) the discussion of the ultra-
sonic behavior is quite straightforward: The pho-
non frequency to be obtained from Eq. (1) is a
complex quantity, ~, = &a, -iy„and the velocity s
and (energy) attenuation constant o. are given, re-
spectively, as e, =s q and u =ay, /s.

Although Eq. (1) can be used for more realistic
electronic states, in the following I assume plane-
wave states for the electrons. Furthermore, by
assuming y, /(a& «1 as well as q/kF «1, AF being
the Fermi wave number, Eq. (1) is approximately

2 2 2

F,(q, v, —i0') +5'(q, v, —i0') '

where &,'- Ig(q)l'/V(q) -=s,'q'. 3 Note that in the
jellium model s,' =0. If s,2& 0 the phonon will be
harder than in the jellium model, while if s,'&0
the phonon will be softer. Solving Eq. (2) for ~,
and y„one obtains

(s/so) =g(A+() +[+ g)++82']' ) (3)

(4)y, = 2~,&(s./s)',

With

2N(e p)
F+(q, cu, —i0') +P (q, ~, -i0'). , =A-iB,

where $ =s,'/s, ', so=0~/[8me'N(ep)]"' is the
Bohm-Staver sound velocity, and N(e F) is the
electronic density of states at the Fermi surface.

Thus, for the paramagnetic state one obtains

s/s, = [(+X./X. ]'", ~/~. =(s./s)',
where y, =2N(&F) is the Pauli spin susceptibility,

=y„(0,0) is the exchange-enh;Lnced spin sus-
ceptibility, and a, =m~, /2vF is the attenuation con-
stant in the jellium model without the exchange
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FIG. 1. The attenuation n (solid lines) and velocity s
(dashed lines) of longitudinal acoustic waves in the
paramagnetic state for different values of $. The para-
magnetic spin susceptibility (dotted line) is assumed
2s X /XO=Tc/~1' —Tc~ ~

effect, ' vF being the Fermi velocity. The result
of Eqs. (6) is valid for a paramagnetic metal as
well as for» 1'c in a ferromagnetic metal.

The velocity and attenuation of sound are re-
lated to the paramagnetic spin susceptibility in a
very direct way. This relation comes from the
fact that the exchange interaction between elec-
trons effectively reduces the Coulomb repulsion
between electrons' and thus enhances the screen-
ing of the ion-ion interaction. Note, however,
that since in Eqs. (6) XJX can vary only within
the range 0-1, the size of the temperature de-
pendence of s and o. depends very crucially on the
magnitude of $. The absence of significant tem-
perature dependence in the phonon frequency of
Pd which has large and strongly temperature de-
pendent y, for instance, can be understood by
assuming a large $.

According to Eqs. (6), for structural stability
at and above Tc one requires that $ ) 0. If t & 0
and g increases with lowering temperatures,
there will be a structural instability at a temper-
ature where $ +X,/X =0. This instability will be
observed as vanishing of sound velocity and diver-
gence of attenuation. This kind of mechanism
might be responsible for the structural transfor-
mations observed in the A15 compounds. '

In Fig. 1 I illustrate the above ultrasonic behav-
ior by a numerical example. I assumed g /X,
=Tc/(T Tc) in -Eqs. (6). Note that, according

to Eqs. (6), the magnitude of $ can be determined
if measurements of the temperature dependence
of ultrasonic propagation and paramagnetic spin
susceptibility are made simultaneously.

Now let us consider ultrasonic propagation in
the ferromagnetic state. Near Tc, by putting"
E, (q, e, —i0+) =R, (0, 0) +2iw&(eF)s/vF in Eq. (6),
one obtains

V (6
2 + 52) 2[(P2 +52)2 + P 2]- 1

B ~
VP (P

2 + 52) [(P
2 + 52)2 + P 2]

where V(0)N(~F) =- V, and

(7a)

(7b)

1-V(0)R, (0,0)-=+5,

2w Vs/v F =p.

(6)

(9)

Note that 0 & 5 «1 and 0 &P «1 in the present tem-
perature region and that since ~ is proportional
to the magnetization' of the electrons, in the
mean-field approximation,

5'=d(Tc —T)/Tc, (10)

where d is a positive constant of order unity.
Actual solution of Eq. (3) with A and B given by

Eqs. (7) requires a numerical method. Before the
numerical analysis, let us discuss the expected
features of the solution. The dynamic screening
behavior depends very sensitively on the magneti-
zation near T c,. We may divide the temperatures
into the following three regions: (i) 0 & (Tc -T)/
Tc«(so/vF) i (b) (so/vF)'& (Tc —T)/Tc (so/vF);
(iii) (sJvF) &(Tc-T)/Tc«l. In region (i) very
close to Tc, where 5'«P2, Eqs. (7) reduce toA
=- VP2 and B= VP, and, accordingly,

s/so —W$i a/ao = (so/s) (11)

Comparing with the result of Eqs. (6) we find that
at T =Tc both the velocity and attenuation of longi-
tudinal acoustic waves are continuous and do not
have either minimum or maximum. This result
agrees with the experimental observation on Ni. '

In region (ii) where P2& 52&P, we obtain A=- V54/

p' and B= VP (5'/P'). Since a is proportional to B,
a is enhanced by a factor 5'/p' = (vF/s, )2M2 from
that of region (i). Note the large factor (vF/s, )'
as well as the temperature dependence in M'.

Similarly in region (iii) where P & 5'«1, we ob-
tainA= —V+Vp2/5', B=VP/52, and, accordingly,

s/s, = ((5 —1) + [~V'+ V(5 —1))~'/5']'" (12a)

a/a, =V(s,/s)'/5', (12b)

where 22Vs, /vF =&. Firstly, as can be seen
from Eq. (12a), if (&1, s becomes imaginary in
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FIG. 2. The attenuation n and veolcity s of longitudinal acoustic vraves in the ferromagnetic state for different
values of g and s, /yF.

the present temperature region. That is, if 0& $
& 1 an itinerant-electron ferromagnet will have a
structural instability at a temperature T in re-
gion (ii) or (iii), producing a softening of sound
velocity and an increase of attenuation. Secondly,
as is shown in Eg. (12b), in the present tempera-
ture region n is enhanced by a factor 1/5'=1/M'.
Thus e decreases, after it increased in region
(ii), as one lowers the temperature near Tc. Ac-
cordingly a maximum of & is expected to occur
between regions (ii) and {iii), without involving a
structural instability. Finally, in the case of 0
& $ & ]., if it happens T &To one may observe two
maxima in&, one at1", and the other atT .

In the above, note that T, and/or T are very
close to Tc, lying within the range (s,/vF)'& (T c
—T)/T c (so/vF). Actually for Ni, ' since (T c —To)—=0.1 K whereas T c = 630 K, (T, —T,)/T, —= 10 '.
Note that generally s,/vF =10 '-10 '.

In Fig. 2 I show examples of my numerical an-
alysis based on the full expressions of Egs. (7).
I assumed V =1 and d =1. Qualitatively the exper-
imental observation on Ni is similar to the be-
havior shown in (a) and (b) of Fig. 2 with $ = 1.5.
One maximum in e belcnv Tc is obtained without
structural instability. According to my experi-
ence, the size of the maximum of & is very sen-
sitive to the value of $ and can be changed signi-
ficantly by adjusting $ within a rather narrow
range.

For $ =0.5, Figs. 2(c) and 2(d), as anticipated,

show structural instabilities associated with
softening of sound velocity. Especially for the
case of (slav, ) =10 ', one can observe two maxi-
ma in &, one smaller and broader at + T'p and
the other larger and sharper at T =T (&T,&Tc).
Note that a very similar behavior of & is report-
ed" in MnP in a magnetic field. It would be inter-
esting to examine whether a structural transfor-
mation is induced actually in MnP near Tc.

In this Letter I presented a study only of the
longitudinal acoustic phonon which is related to
the elastic constant C». In actuality, however,
as in the A. 15 compounds, ' the observed structur-
al instabilities are often associated with softening
of the transverse phonon for which the collapse of
Cxl C12 is responsible. Obviously, if C»& 0, the
collapse of C„—Cxs comes before that of
Thus the possible softening of Cyy will be arrest-
ed by the structural transformation associated
with the collapse of C„-C„.

I have also formulated here an itinerant-elec-
tron-model theory for ultrasonic propagation in
a ferromagnetic metal within the simple mean-
field approximation. Note, however, that the
mean-field-approximation consequences, such
as presented here, were not explored before. It
is needless to remark that in order to make the
discussion more quantitative one has to consider
many additional mechardsms' such as the trans-
verse spin fluctuation effects." The present Let-
ter is intended to be a starting basis for such
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further studies. Also, the concept will be useful
for rare-earth metals where it is important to
consider the screening of the ionic interaction by
conduction electrons. "

I would like to thank Mr. M. Tominaga for his
help with numerical calculations.
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The Evans modification of Ziman liquid-metal theory is extended to apply to amorphous
and disordered crystalline alloys. In particular, the theory is shown to explain such
common behavior of these systems as the change in sign of the temperature coefficient
of resistivity with alloy composition, the quadratic temperature dependence of resistivi-
ty at low temperature, and the 1inear temperature dependence of resistivity at high tem-
peratures.

The anomalous temperature and composition dependence of electrical resistivity of amorphous and of
many crystalline alloys has been the subject of considerable recent work. ' '4 The behavior of these
systems is characterized by (i) temperature coefficients of resistivity which change sign as alloy com-
position changes, (ii) changes in resistivity which vary as T~ at low temperature and as T at higher tem-
peratures, and (iii) a generally 8-shaped curve of resistivity versus temperature. These common
characteristics strongly suggest a common origin. Among the suggested explanations for these effects
are localized spin-fluctuation scattering, "d band effects, e' the Ziman liquid-metal theory, "and the
Evans, Greenwood, and Lloyd modification of the Ziman theory. ' '~ We will demonstrate that the modi-
fied Ziman theory correctly predicts the observed T2 and T temperature dependences and explains the
effects of composition changes. Furthermore, we present a unified description of the behavior com-
mon to amorphous and disordered crystalline metals.

The resistivity of pure metals is given in the modified Ziman theory as
3

where Qo is the atomic volume, VF is the Fermi velocity, kF is the corresponding wave vector, and
8(q) may be written in terms of the dynamic structure factor as

S(q)= f, S(q, te) exp )
—&

B B
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