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We present a new calculation of the critical exponents of the n-vector model through
field-theoretical methods. The coefficients of the renormalization functions of the (p )2

theory are expanded in powers of the coupling constant. Asymptotic estimates of large
order of perturbation series are used to transform the divergent perturbation series into
a convergent one. As a consequence, new and more precise values of critical exponents
are obtained.

A(g) =QsAsg

behave for large K (E.-+™)as

A, -It.!{-a)sz',

.re a and & have been calculated in three di-
risions' for the various renormalization- group

(2)

Initiated by Wilson, ' the field-theoretical ap-
proach to critical phenomena' has been extreme-
ly successful in the domain of phase transitions.
In particular, it has been possible to calculate
physical quantities such as critical exponents
through the famous Wilson-Fisher' & =4-d ex-
pansion. More recently, use hes been made of
perturbation series for the gp' field theory di-
rectly in three dimensions~' to calculate critical
exponents for Ising-like systems.

We want to show here how recent progress in
field theory —i.e., the asymptotic estimate of the
behavior of perturbation series at large orders"

a,llows us to calculate more accurately the
same exponents. The perturbative expansion for
the renormalization-group functions of the g(y')'
field theory with O(n) symmetry has now also
been generated for n = 0, 2, and 3 (Table I),' and
we present, therefore, results for the n- vector
model. The results for n =0 describe the statis-
tics of polymers. '

The main ingredient that we shall use in the
analysis of the perturbation series is the follow-
ing: It can be shown" that in the g(y')' field the-
ory large orders of the perturbative expansion of
any physical tluantity A(g), with
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n= 1

g + g —0.4224965707 g + 0.3510695978 g
2 3 4

0.376526828 g + 0.49554751 g - 0.749689 g
5 6 7

1 ——g + —g - 0.0230696213 g +0.01988682p3 41 1 2 3
6 27 g

0.02245952 g + 0.0303679 g
5 6

PE 0109739369 g + 0.0009142223 g +Q, QQ17962229 g
2 3 4

0.00065370 g + 0.0013878 g
5 6

n = 2

g + g —0.4029629630 g + 0.3149169420 g
2 3 4

0.317928484 g + 0.39110247 g — 0.552448 g
5 6 7

1 - —g + —g — 0.0259419075 g +0.020/323538 g
1 1 2 3. .

5 25

0.02219865 g + 0.0279829 g
5 6

0.0118518519g2+ 0.0009873601 g + 0.0018368107 g

0.00058633 g + 0.0012514 g
5 6

n = 3

g + g —0.3832262015 g + 0.2829466813 g
2 3 4

0.270333298 g + 0.31255586 g —0.414861 g
5 6 7

1 ——g + —g —0.0276673019 g +0.0201190591 g
5 5 2

22 121

0.02101293 g + 0.0247497 g
5 6

0.0122436486 g + 0.0010200001 g +0.0017919258 g

0.00050410 g + 0.0010883 g
5 6

n=p

g + g —0.4398148149 g + 0.3899226895 g
2 3 4

0.447316097 g + 0.63385550 g — 1.034928 g
5 6 7

1 ——g + —g —0.0184623402 g3+0.01 72838882 g4
8 32

0.02062072 g + 0.0299914 - g
5 6

0.0092592593 g + 0.0007713750 g +Q.0015898706 g4

0.00066062 g + 0.0014103 g

TABLE I. Perturbative expansion (Ref. 8) of renor-
malization-group functions of the g(y ) field theory
with 0(n) symmetry in three dimensions.
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functions [W(g), q(g), etc.]. The presence of a K!
behavior had been anticipated by Baker et aE. ,'
who used the I'ade-Borel method to sum the ser-
ies and obtain values for the critical exponents
for Ising-like systems (n =1). The more complete
information now available allows us to apply a
more precise method. Defining the Borel trans-
form of A(g) by

B(g) =Z (A /K')g',

we can determine from Eq. (2) the position and

the structure of the nearest singularity of B(g).
Under the assumption that B(g) is analytic in a
cut plane, it is possible to map the cut plane on
a circle and obtain a convergent expansion' for
B(g) a,nd therefore A(g)—so that

A(g) = f, e 'B(tg)dt.

As shall be explained below, this method can be
further refined with use of the known coefficient
!) of E(I. (2). Our best estimates for the critical
exponents are presented in the following table:

1.414+ 0.003
1.2402 + 0.0009
0.0315+ 0.0025
0.6300+ 0.0008
0.782+ 0.010
0.493 + 0.00$
0.325+ 0.001

1.405+ 0.002
1.3160+ 0.0012
0.0335+ 0.0025
0.6693+ 0.0010
0.778+ 0.008
0.521+ 0.006
0.346+ 0.001

1.391+0.001
1.3866 + 0.0012
0.0340+ 0.0025
0.7054~ 0.0011
0.779+ 0.006
0.550+ 0.005

0.3647+ 0.0012

1.4170+ 0.0045
1.1615+0.0011
0.0260 + Q.QQ30

0.5880+ Q.OQ10

0.790+ 0.015
0.465+ 0.010

0.3020+ 0.0013

Here, g* is the fixed-point value of the renormal-
ized coupling constant, normalized in such a way
that W(g) =-g+g +O(g ), and y and v are the cri-
tical exponents which govern the behavior near
the critical temperature T, of the magnetic sus-
ceptibility )( and of the correlation length $, re-
spectively, such that

The exponent g gives the large-distance behavior
at T, of the spin-spin correlation function G(x)
-x'"" ", and co governs the leading corrections
to scaling.

Our results for the critical exponents in the
case with n = 1 are compatible with, but more
precise than, those obtained in Ref. 5: y=1.2410
+0.002; g=0.021+0.02; v=0.627+0.01; w =0.78
+0.01; and 6,=0.49+0.01. Our results give also
more precise values than the most recent high-
temperature-series estimates" and are in agree-
ment with them, even now for the exponent y al-
though the value is definitively lower than the cen-
tral value given by high-temperature series. Our
results are also in very good agreement with the
most recent experimental results" (see Table II).
%e shall briefly sketch the method which we used
to derive these results. "

The critical behavior of a second-order phase
transition is governed' by the infrared-stable
zero g* of the renormalization-group function
W(g) of the g[y'(x)]' field theory, which is de-
fined through the renormalization constants Z((, )

n =n(g*), v = v(g*), y =y(g*).

Finally, the leading corrections to the scaling
laws are governed by the exponent

(6)

u& =W'(g*).

Let us denote by A(' (g), for i =1-5, the func-
tions W(g), W'(g), ))(g), v(g), and y(g), respec-
tively. Their perturbation expansion is

A ')(g) =g A ')g, (10)

where the coefficients A~ '~ have been calculated
by Nickel' up to K = 7 for W(g) and up to K = 6 for
the other functions. It has recently been shown'
that the asymptotic behavior of A.~ '~ for large K
is given by

A~(') K!(-a) K (&)C(()[l+O(I/K)],

where the numerical values of a and b are as fol-

for the field and Z «)(g) for the vertex by

W(g) = (d -4)[sing /()g], g =gZ( )/Z . (6)

Z &» being the renormalization constant for the
y' insertion, the critical exponents g, v, and y
are determined by the functions'

q(g) = W(g) fd lnZ (g)/dg],

v(g) = [2+W(g)d lnZ(, )/dg —)!(g)],

y(g) = v(g) f2 —n (g)],
evaluated atg =g*, i.e. ,
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n =

y 1.2402+0. 0009 1.241+0.002 1.240+0.007

-0 007
+0.003

1.27 1.28

P.P315+P P025 0.02]+0.02 . 0.0]6+P.OP7
a

0.016+0.014

v 0.6300+0.0008 0.627+0.01 0.625+0.003 0.638-0.008
0.625+0.005

g 0.325 +0.001 0.320+0.016 0.321 0.323
b

0.329 0.312+0.005

TABLE II. Comparison of our results (first column)
with those of Baker et al. (second column; Bef. 5), ex-
perimental data (third column; Bef. 12), and high-temp-
perature-series results (fourth and rightmost column;
Bef. 11).

B'"(gt) of the function A"'(g) by writing

(i) UE'
g(i)( ) j itb g

~ 1 (K+5'+1)
=j e 't~ B'"(U)dt, (13)

where b' will be varied in the neighborhood of b

and where U=gt. The important point is that the
behavior (11)for large K gives the location and

the nature of the nearest singularity of the Borel
transform B'"(U). This singularity is located at
U= —1/a, where B'"(U) behaves as (1+aU)'
or as ln(1+aU) for ti'=6+1. Assuming that
B"'(U) is analytic in the U-plane cut from —1/a
to -, we can now map this cut plane into a cir-
cle in the x plane with

0.316+0.008
C

0.328+0.004
U=x(1- —'ax) '= jU„x",

n=&
(14)

11 = 2

v 0.6693+0.0010 0.675+0.001

IL = 3

1.3866+0.0012

q 0.0340+0.0025

v 0.7054+0.001]

1.405+0.02

+0.02
-0,01

0.043+0.0]4~
0.040+0.008

+0.0]0
'7025-o. oo5

0.7 17+0.007

0.725+0.015

1ows:

a = 0.147 774 22. . . ,

5+ ,'n for (u(g);-
5(, )

=- 3+ ,'n for W(g),—v(g),y(g);
2+-,'n for il(g).

(12)

We introduce the generalized Borel transform

'Chang et a$. , Bef. 12.
Hocken and. Moldoyer, Bef. 12.
Greer, Bef. 12.
Mueller et al. , Bef. 12; Greywall and Ahlers, Ref.

12.
~Camp et al. , Ref. 11.
~Domb, Ref. 11.
gBitchie and Fischer, Ref. 11.
Ferer et al. , Ref. 11.

'Camp and Van Dyke, Bef. 11.

the integration in (13) running from x=0 to x
=4/a. The Borel transform is now given in (13)
through a conve~ge+t series in x, which leads to

~'(g)=P B„(j e 't'[x(t)]" dt) (15)

We have first used this result to calculate the
zero g* of W(g). We have done this by several
methods. One method consists of calculating the
zero g* of W(g) for different number of terms of
the new expansion (15). Because the successive
values of g* seemed to converge very smoothly,
we extrapolated them with use of Pads approxi-
mants. Another approach used was to write W(g)
as -gE(g) or g+g'E(g—), and then apply our
method on the E(g). This latter method seems to
converge faster than the former one and, without
the use of any Pads extrapolation, yields precise
values of g* which are consistent with those ob-
tained from the other methods. In each case, we
have varied 6' in a neighborhood of b in order to
generate a function B(U) with a weak singularity
[(1+aU)'t, ln(1+aU), (1+aU) 't'] at U= —1/a.
This has given us a range of values for g*, for
which we have calculated the other quantities
A"'(g), agai~ with application of the same meth-
ods as for W(g).

We have made other checks like calculating ex-
ponents from the direct series and its inverse,
and verified the scaling laws 2P = 3v —y and y
= v(2 —7)) between the independently computed ex-
ponents. All the results that we have obtained are
consistent with one another.

Finally, several advantages of our approach
with respect to the Pads-Borel method are to be
emphasized. First, it gives more stable and ac-
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curate values, as we have verified, for instance,
on the calculation of the ground-state energy of
the anharmonic oscillator where, for an interme-
diate coupling, the accuracy is, for six terms of
the perturbation series, of the order of 10 ' for
the Pads method, 10 ' for the Pads-Borel meth-
od, and 3 &10 4 for our method. Second, to im-
prove efficiently the rate of convergence of a ser-
ies by means of the Pads-Borel method, the per-
turbation series has to alternate in sign. This
condition is not crucial in our approach. This is
particularly important in the calculation of criti-
cal exponents from y' field theory in three di-
mensions, where Baker et al. ' only used 1/y(g)
and t), (g) -=W(g)(d/dg)ln[Z&» (g)], whose series al-
ternate in sign, the other critical exponents being
obtained by scaling relations. With our method,
we could calculate all exponents independently.

We are extremely grateful to G. A. Baker, B. G.
Nickel, and D. I. Meiron for communicating to
us, prior to publication, the Taylor series listed
in Table I. We especially thank B. G. Nickel for
correspondence concerning these numbers.
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An intinerant-electron model for ultrasonic propagation in a ferromagnetic metal, for
both above and below the Curie temperature Tc, is developed within the mean-field ap-
proximation. The attenuation maxima of the longitudinal acoustic wave are shown to oc-
cur at slightly below T& in agreement with the experimental observation on Ni. In addi-
tion, new possibilities of magnetically driven structural instabilities in metals are point-
ed out.

The ultrasonic method has been used extensive-
ly in studying ferromagnetic substances. ' Most
of the previous theoretical treatments' of the ul-
trasonic propagation, however, are based on the
localized-spin model for ferromagnetism. In this
Letter I develop a simple itinerant-electron mod-

el for the ultrasonic behavior of a ferromagnetic
metal.

In discussing the lattice vibrations of a metal,
either magnetic or nonmagnetic, it is most irn-
portant to consider the screening of the ion-ion
interaction by the conduction electrons. ' I pursue


