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The ballooning-mode code is used to compute
critical volume average P versus q on axis for
near-circular equilibria and fixed aspect ratio,
where P =8n f Pdv/&r'. Here &r is the vacuum
toroidal field. In Fig. 2, the vertical dashed
curve at q = 1 indicates the threshold for inter-
change stability. The solid curve indicates the
ballooning-mode threshold for our theory. A
dashed curve that varies as q

' is also plotted.
We see that the curves coincide for large q. For
fixed q, we have found also that critical p varies
linearly as the aspect ratio.
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We calculate by renormalized field theory, up to two-loop order, the bicritical dynamic
exponents of stochastic models appropriate for describing spin-flop bicritical points. In
the presence of reversible mode-coupling terms, two-loop contributions establish bicriti-
cal dynamic scaling in the restricted sense and invalidate recent predictions based on
mode-coupling arguments. In case of a purely relaxational model, total bicritical dynam-
ic scaling is found to second order in e =4 —d.

The verification of the dynamic scaling hypothesis for various models was one of the important re-
sults achieved by the renormalization-group approach to critical dynamics. Although in some cases
there still exist difficulties in interpreting the results of an c expansion near an ordinary critical point, '
one is led to employ this successful method also in investigating dynamic scaling near multic~itical
points. Siggia and Nelson have recently studied tricritical dynamics to linear order in c =4-d; in
case of He -He mixtures they find ambiguities similar to those appearing in model C of Halperin, Hoh-
enberg, and Ma (HHM). s
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In this Letter, we report the first renormalization-group analysis of bicxitical dynamics. We for-
mulate stochastic bicritical models in terms of the Lagrangian version of the Martin-Siggia-Rose theo-
ry, ' as given previously by one of us, ~ and employ the field-theoretic renormalization-group approach
of Bausch, Janssen, and Wagner' combined with the minimal subtraction procedure, In the presence
of reversible mode-coupling terms we find that bicritical dynamics must be treated at least up to two-
loop order in order to avoid a spurious breakdown of scaling at O(e =4 -d) and to work out the leading
deviations from conventional theory. These results invalidate a recent prediction' given on the basis
of mode-coupling and scaling arguments for the n = 3 spin-flop bicritical point in uniaxial antiferromag-
nets having rotational symmetry around the anisotropy axis. Our analysis will show that bicritical dy-
namic scaling, at least in the restricted sense, is indeed valid to two-loop order in several cases in-
cluding the case considered by Huber and Raghavan. " Furthermore, our results provide additional
motivation for reexamining tricritical dynamics by a two-loop analysis.

We start from the bicritical Hamiltonian

H= ,fd x—[r~~o +(V o) +r~s~+(V' s)'+yn'+hm+ U(o'2)'+2Wa' s~+ V(s') +Amo'+Bms J,

which is identical with that of Kosterlitz, Nelson, and Fisher except for the additional terms contain-
ing the one-component nonordering density m. In a dynamic theory these terms must be treated explic-
itly provided that I is a conserved density (e.g. , the z component of the magnetization of an n, ~+n ~ = 3
component uniaxial antiferromagnet in an external homogeneous magnetic field h). o(X) and iF(X) denote
n~~-component and n ~-component order-parameter densities, respectively. Our dynamic model is de-
fined by the action integral' 4= JdtL with the Lagrangian"

L = f d &J o (L,a„-o —L,5H/6o„) + s „(L,s „—s, L„&OH/5—s 8+ G ss 85H/5m)

+m(-L V~yn -m+L„V~6H/6m —G„8s&5H/Os )] (2)

(summation over repeated indices is implied). The variables o(xt), K(xt), and m(xt) are response
fields. The L,'s are kinetic coefficients, L 8=L, 5 &+E &, G & and I'

&
are antisymmetric mode-

coupling matrices. All relevant couplings are retained in (2) as can be seen from dimensional argu-
ments applied to J, in complete analogy to the static case.

We shall examine the following cases: (I) n~~ I, n~=2, with G„=G, E»= F; (II) n„and n, arbitrary
but m not conserved. Applications are the spin-flop bicritical points in MnF, (case I) and in GdA10,
(case II with n~~ n ~ I) and possibly tetracritical points in higher-component systems exhibiting dis-
placive transitions' (case II with n~~+n~~ 4).

We proceed according to renormalized field theory' by introducing renormalized fieMs y,. = Z,. "~j
(j=o, s, m, o, s, m) and a set p, of renormalized dimensionless parameters. We need in particular the
ratios p, =X,/X, and p, =X,/A. with). ;=Z~, L,, the static parameters a=A/4pp, "~Z„b=B/4m', '"Z„
and the mode-coupling constants g= G/4m', '"x Z„ f = E/4wp'"X Zz,'he, re g

' is the usual parameter
defining a length scale in the renormalized theory. With the functions

y „=(p, a„ inZ~, )0, &= (ps„ inZ~ , )0, p~, =(p& „p,)0.
(the subindex 0 means differentiation at fixed unrenormalized parameters), the renormalization-group
equation for renormalized vertex functions I"(„.) reads

(pB +Q. sy +Qp~ 8&+Q 87 K sB — +n y& )I („.)=0. (3)

The integers n, count the number of fields y,. associated with the vertex function under consideration.
T) and ~, are renormalized linear measures of the deviations from the bicritical point in the h- T plane.
The 2 &2 matrix v„8 as defined by ~ 7„z„&= (p, s„~s)0 is diagonal if 7„v, are scaling variables; hence
its eigenvalues at the fixed point are 2 —v ' and 2 —g v ' with P being the crossover exponent. '

In determining the Z factors we have taken advantage of the minimal renormalization procedure. ' As
pointed out by De Dominicis and Peliti, ' allows one to renormalize statics and dynamics separately.
Furthermore, in this procedure dissipation-fluctuation theorems result in general relations between
the Z factors, whose validity is not restricted to fixed points and which provide an enormous simplifi-
cation in higher-order computations. For our models such relations are Z 2=Z, Z~ =Z-,/Z, (mod-
el I), and Z~ '= Z-, /Z„Z~ '= Z;/Z, (model II).

947



gQLUME $9y NUMBER 15 I HVSrCxr. RZVjzW I.zTTzRS 10 OcTQBER 1977

Mode/ I (n~~ =1 s, 2). First we extend previous static results by treating the explicit ni couplings
in (1). Because within statics m can be integrated out, there exist the following exact relations (for ar-
bitrary n~~ and n, ):

p, = a[»„—(e+ y ~ )/2]+ b»„,

pg= a»~~+ b[»gm —(c+y ~ )/2].

They imply, according to the two eigenvalues of z 8*, the fixed-point values y~ *=d —2v ' and y~ *
= d —2@v '. For the Heisenberg fixed point' the latter value corresponds to a stable fixed point with
a*/b*= —n~/n„= —2 (exact) and a* =n~(2/v ' —d)/(n~~ +n~~n~)+O(e ). The corresponding correction
exponents are &u,

= (Q —1)/v and ~, = 2gv ' —d which again are exact results.
For the dynamics of model I it is convenient to introduce the complex renormalized parameter p =p,

+if. To one-loop order we obtain the dynamic P functions

(4)

(5)

(8)

—p 1n(p, /p, )( [ 2ao(1+ p) - ab] + igb [go(1+p) —ab]]/(1+ p),
which complements the right-hand side of (6), apart from additional (but well-behaved) contributions.
The logarithm in (9) no longer permits a finite value of p,*, i.e., a vanishing of p,*/p, *. Instead we
find at two-loop order the stabLe dynamic fixed point

Pp
= -P(2a'+ b' -a'/P. ) + 2(aP + ia)'/(1+P), (6)

I8&
= -p [f +z(y& —

y& )]= -p (2a +b -g /p, )+2(bp~) /(1+p~), (7)

p = -g(e+2&+y~ )/2= -g(e/2+a + b /2-g /p, ).

The first parts of Eqs. (7) and (8) are exact as follows from Z~ '=Z-, /Z and Z,'=Z . The zeros of
(6)-(8) yield the stable fixed point p*=1.496+ i1.585, p,*=0, g*= +(144m~up, */11)"', with a positive
(negative) sign of f* if the product a*g* is taken negative (positive). The vanishing of p, */p, * leads to
two different dynamic exponents z, and z, for the "parallel" and "perpendicular" order-parameter cor-
relation function and implies a breakdown of bicritical dynamic scaling. To linear order in e we find
z, =2, z, =g/v=2 —2e/11, and the transient exponents +~=(0.299+i0.283)e, &u =2m/11, and &u, =0.928'.
These results seem to confirm the recent prediction" based on mode-coupling arguments. Naturally
at this point the question arises as to the importance of "corrections of order e'."

We have found, however, that the two-loop contributions to the p functions cannot be considered as
"corrections" but establish a new stable fixed point fox arbitrarily small e. This unusual feature re-
sults from the singular two-loop term

2= 144 2 /11, (10)

with the finite ratio p,*/p, *—exp(-198/e). This implies z, =z, -=z and therefore restores bicritical
dynamic scaling in the restricted sense. We have a violation of extended dynamic scaling due to the
different exponent z =2+/* governing the m —m correlation function. z, is related to z via z, =z
+P */p *. From (7) and (8) we get z, =2+2(y~ *—y~ *) and z = P/v (exact). To two-loop order we
find

z = 2+cd+ O(Z.*/Z, *)

with c = —", ln —', —1 = 0.0357.
Besides model C of HHM'~nd perhaps the tricritical model of Siggia and Nelson' our bicritical

model I represents a novel example where a nonanalytic e dependence appears's and two-loop contribu-
tions cause a qualitative change of O(e) results for arbitrarily small e. Although we have some confi-
dence in the relevance of our two-loop results at least in a qualitative sense, we cannot rule out the
possibility that higher-loop terms even restore e&tended bicritical scaling and also drive the numerical
value of p */p, * to a less fantastic order of magnitude.

Model II.—We assume m to be a nonconsexved density. In this case the critical dynamics of the or-
der-parameter components is not affected by the nz variable. Therefore we drop the corresponding
terms in (1)-(3) from the outset and deal with a purely relaxational model for the s and a fields. The
dynamic parameter of interest is the ratio X -=X,/X, of the renormalized kinetic coefficients. The lead-
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(12)

ing contributions to the corresponding )8 function p~= (pB„A.), arise in two-loop order and are given by

pz= (A/18)(r (ni+ 2)v —(nii+ 2)u ](8 In~~ —I)+niiw [2 in(a /p) +4). In(2n/p) —1]
—n iw~r 21n(cP/yX)+4k ' In(2n/y) —1]j,

TABLE I. Dynamic diconical (g~) and Heisenberg
(gH) exponents for model II evaluated to order q at
6 —1~

1
2
3
4
5
6
7
9

10
11
13
15

1.1145
1.0000
1.0241
1.0000
1.0205
1.0846
1.2131
2.1588
6.0005

0.0090
0.1271

2.0135
2.0135
2.0149
2.0151
2.0151
2.0149
2.0147
2.0141
2.0138
2.0135
2.0129
2.0122

2.0135
2.0145
2.0150
2.0151
2.0150
2.0148
2.0145
2.0138
2.0135
2.0131
2.0124
2.0117

with o.—= 1+X, P=—1+2K, y —=2+A. .
For the static Heisenberg fixed point' one ob-

tains 1*=1, independent of nrr and n~. For the
biconical fixed point' we consider nrr

= 1 and n i
=n —1. The corresponding values An*(n) are giv-
en in Table I which complements the static expo-
nents table of Kosterlitz, Nelson, and Fisher. '
Table I also contains the dynamic exponent z —=z,
= z, for the biconical and Heisenberg case (with

ni, = 1 and n, = n —1). In the latter case the correc-
tion exponent is &u~= 2ne'(n+8) ' ln-', .

In conclusion, bicritical dynamic scaling is
obeyed both for model I (in the restricted sense)
and for model II (as long as static scaling holds).
Thus in the asymptotic scaling region there exist
characteristic frequencies for the "parallel" and
"perpendicular" order -parameter correlation
function governed by a common dynamic exponent
z and common transient exponents co, It would
be interesting to test this prediction experimen-
tally by inelastic neutron scattering near the spin-
flop bicritical points in MnF, (z = 2.0007) and in
GdA103 (z = 2.015, (u„= 0.01).

Finally we briefly touch on the question as to
the experimental accessibility of the asymptotic
dynamic scaling region. Although our theory
cannot answer this question quantitatively we sus-
pect that, according to the extremely small ratio
p,*/p, *, an n = 8 system like MnFa may show an
effective behavior corresponding to the O(e) fixed
point (p,*/p, *=0), i.e. , with two different effec-

r tive exponents z, =2.00 and z, =z = g/v=1. 78,
even very close to the bicritical point. We hope
that future experiments in MnF2 are sufficiently
accurate to answer this question and eventually
show an ultimate crossover to the asymptotic dy-
namic exponent (11).
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