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Lines of critical points which emerge from the two-dimensional planar model's multi-
critical point are analyzed, These lines seem to be in the same universality class as
both the Ashkin-Teller and the eight-vertex (8V) models' critical lines, with the multi-
critical point being isomorphic with the 8V model at both the points tanh2& = W2/2 and —1.
Expansions of critical indices about these values of & are performed. If this analysis is
right, then this work permits the evaluation of a whole class of interesting correlation
functions at the critical point of the I" model and that of the four-state Potts model.

In a recent publication, Jose, Kadanoff, Kirkpatrick, and Nelson described an excitation model
which in appropriate limits reduced to the Villain form of the planar model and to the p-state planar
Potts model. For p=4, the latter is the Ashkin-Teller (AT) model. They showed that this excitation
model produced the Kosterlitz-Thouless'4 multicritical point (MCP) for the planar model and identified
six lines of continuously varying critical behavior emerging from this multicritical point. In this Let-
ter, we argue that one of these lines (which is isomorphic to three others) is, in fact, in the same uni-
versality class as the AT and eight-vertex (8V) models.

The excitation model has two kinds of integer quantum numbers: m(R), which describes vortices at
the dual-lattice sites, R; and n(P), which describes the breaking of the planar model's rotational sym-
metry. The excitation Hamiltonian, H[n, rn], is infinite if the sum over sites of n(r) or m. (R) does not
vanish. Otherwise, JI=IIo+ V, with'

Ho = —Iny&Q [n(r)] —Inyog [m(R) js,
R

V[n, m] = —2 K„Qn(r) V, (r —r')n(r') ——,K Q m(R) V, (R-R')m (R') —iPQ n(r) V2(r —R)m(R). (1)
fR' r R

This model has long-range interactions since,
for large separations,

V, (r) + t V,(r)-In(x+ zy). (2)

r ly solvable when the y's go to zero and has a mul-
ticritical behavior at the MCP

In this paper, we limit ourselves to p=4, which
is the symmetry breaking appropriate to the AT
model. In fact, the model reduces to the AT mod-
el in the AT limit:

K„=16lK; yo =y~= 1.

On the other hand, the excitation model is exact-

K„=E =4; yo=yp=0. (4)

Furthermore, this model seems to have a criti-
cal line:

K„=K =K; yo=y&=H/2n&0,

where K depends upon II. Our strategy is to ex-
pand about the point (4) on the line (5) and to use
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identifications built from the AT limit (3) to un-
derstand what we are seeing.

To implement this strategy calculate the parti-
tion function Z and the correlation function

&O[N, MJ&

= Q Z 'exp(-H, [n, m] —V[N+n, M+m]). (6)
m

Here 4N(r) and M(R) are sets of integers which
we choose to be nonvanishing on a few lattice
sites r,. and R,. We then define local operators,
O~(r) and O„(gl, by writing O[N, M] as a product:

I

O[N, M] = g, O,(-, )(F,) g„O„(p,)(R„) . (7)

The connection with the AT model is that in the
limit (3) we can exactly identify O„(r) in terms of
the standard S(r) and c(r) variables by the AT
model as shown in line 1 of the Table I. Building
upon this relation, we form the first three col-
umns in the table, which describe the relation-
ship between our most relevant operators and
those of the AT model.

At the MCP (4), it is trivial to calculate corre-
lations among all our operators. For example,

with the standard critical index x„being given by
x„=2N at the MCP. The fourth column of Table
I gives the critical-index values found in this way.
Notice that three of the operators are marginal' '
(i.e. , have x = 2) and hence capable of generating
anomalies, including perhaps lines of critical
points.

We can see at once one possible reason for
identifying the multicritical point with AT -model
behavior. The AT model has x = —,

' and a margin-

al operator with x= 2. Qur multicritical point
has the right index for the order parameter and
three' marginal operators. We hope that our
multicritical point is some point on the AT-mod-
el critical line. But where? Here we ean make
use of the known duality connection ' between
the spin formulations of the AT model and the 87
model. To state this connection, assume that
both models are critical and that in each model
all two-spin interactions are equal, then param-
etrize the critical lines of the models in terms
of their four-spin couplings, called" K4 for the
AT model and' X for the 8V model. Specifically
use variables T4=tanh2K4 and t=tanh2A. , to de-
scribe positions along the critical lines of the
two models. Then the duality connection occurs
when

T4= —t/(1 —t) = T,(t).

When this duality relationship holds then the AT
model and the 8V model are identical at their du-
ality point — except for a change in the labeling of
the operators. In particular the operator related
to the energy density (and hence the specific heat)
of the 8V model becomes, after the transforma-
tion, the crossover operator of the AT model. If
these operators have, respectively, critical in-
dices xcff" (T4) and x,' (t), then the duality con-
nection' implies the statement

(10)

At our multicritieal point, xcR = —,. From the Bax-
ter'2 solution to the 8V model,

Hence, our first identification of the multicritieal

TABLE I. Our expansion. In columns 1 and 2, 0&, 0&', o, and o' stand for 0~(r),
044(r'), o(r), and o(r'), respectively.

Operator
AT idenditific ation

Symbol Meaning
x values

At (4) Expansion

o.+ iS—(S+ io)

(1/2)(Of/f+0 f/9) o.S=P

(1/2)(Of/40 f/4'+0 f/4 f/4 )

(1/2)(Gf/fOf/f +0 f/fO f/f )
Op+0

o +SS'
oo' SS'

( /i1)( O4 f/f O/40 f/40 f/4) oo —SS'

Order
parameter

Polar ization
operator

Crossover
operator

Energy
densities in
AT model

1/8 x =1/8

1/2 xf,= (1—B)/2

1/2 xcR ——(1+B)/2

x~ = 2(1—H)

xp 2

x~ = 2(1+A)
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point of the planar model is

f= v 2/2; T = —(1+W2). (12)

The expansions now imply that near the second
identification point

AT(T )
—&x AT(T )

AT(T ) [ AT(T )]-1

(13a)

(13b)

These statements are consistent with all the data
we have about the AT ~odel. In particular, Eq.
(13a) was proposed by Enting" on the basis of
data near T4= —,

' and T~= 0 and in analogy to a sim-
ilar relation" which seems to hold for the 8V
model. They both hold" to first order in T4 near
the decoupling point T4= 0 and are consistent
with Enting's result' for the Potts point, T4 = 2.
These relations may be exact.

Now let us follow another tack. Follow Ditzian"
and Enting" and assume that the 8V model and
the AT model will fall into exactly the same uni-
versality class, without any change in the identi-
fication of operators. The first consequence of
this universality assumption is that we can also
identify our MCP with some point of the 8V mod-
el in exactly the same manner as we did for the
AT model except that the AT variable S is re-
placed by the 8V variable LLt,. We can then identify
our expression point as the one at which x,sv(t)
=2, or where n= —~. We know immediately that
our point is then the E-model limit of the 8V mod-
el, that is it corresponds to the point

t= —1' T =212 ~ (14)

The point T4= —, is where the AT model reduces
to the four-state Potts model.

If this identification is correct, then essentially
trivial calculations based upon applying the Hamil-
tonian (1) at the special point (4) will define a
large number of interesting correlation functions
for the AT and 8V models at the identification
points (12).

Additional evidence for this identification ap-
pears in an expansion" along the critical line (5)
about the MCP. In this paper we limit ourselves
to first-order expansions in H = 2nyo = 2 py&, the
results of which are listed in column 5 of the ta-
ble. (To get a line of fixed points to second or-
der, one must allow a second-order term in K
—4.) The last three lines in the table are ob-
tained by taking linear combinations of the listed
operators to diagonalize the perturbation.

There is now very clear evidence that;ve are
indeed examining the AT model. First, x =

—,
'

—as proposed by Barber and Baxter. '4 Also, to
first order in the expansion parameter

x,"(t)= ,'x,—"(f),

8v(t) —[x 8 v(f)] "1

(15a)

(15b)

To support this identification notice that Eq. (15a)
follows from the work of Baxter and Kelland, "
that duality implies (15b) as a consequence of
(13b), and that they are consistent with first or-
der expansions" about t=0. (For t=O, the 8V
model reduces to a pair of decoupled Ising mod-
els. ) Thus, our correlation functions at the MCP
seem to describe both the I' model and the four-
state Potts model.

If, as suggested by earlier authors, ""there is
a universality relation between the two models,
then there must be some function U(T, ) such that
when f = U(T,), the 8V model at t =tanh2X and the
AT model at T4=tanh2K4 have exactly the same
critical behavior. Equation (13b) or (15b) de-
scribes this universality condition. When com-
bined with Eqs. (9)-(11)they describe the map-
ping function U as

U(T, ) = sin([2/p+1/sin '(T4/1 —T,)] 'j. (16)
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