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so that o"' becomes comparable to OD' at rela-
tively low energies. The estimated cross sec-
tions are plotted in Fig. 2. It shows the domi-
nance of 0 "' for the incident kinetic energy of ap-
proximately 12 keV and higher, pa, = 30. The en-
ergy parameters used in the evaluation of (3) and

(5) are generated by the single-particle mode15;

ldL3, = 96.5 Ry and b,» = 92.1 Ry for the DI, and 42,
= 180 Ry= 6» for the AI excitations. From the
extrapolation fit of o. discussed earlier, one ob-
tains o.~=0.90, as compared with o.~(Z„= 0) =0.97.
The AI contribution comes mainly from the 2p ex-
citation followed by the Auger emission, while
the 2s excitation contributes about 4% to the total
AI. The contribution of the 3s electrons to the
AI by excitations to states just below the ioniza-
tion threshold is also estimated to be about 3%%uo

and less. For the DI cross section, the 3p ioniza-
tion dominates over the 3s electrons by approxi-
mately 5 to 1.

In summary, I have shown that, for reactions
involving highly stripped ions, oo' alone can often
lead to a gross underestimate of the impact ioni-
zation cross section. The relative magnitude of
Mc (outer shell) and M~ (inner shell) is important,
but not sufficient to make the AI process domi-
nant, and the branching ratio o.; plays an impor-
tant role which warrants much further study. As

S~ increases, we expect that the dominance of
the AI process will be more prevalent even at
fairly low Z„.

The calculation presented here is only approxi-
mate and requires more extensive studies, but
its qualitative conclusions are not expected to be
seriously affected by the details, which will be
reported elsewhere. '
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A steady-state model of a plasma slab, accelerated by interaction with laser radiation,
determines temperature, velocity, and density profiles and boundaries consistent with
laser intensity and wavelength and slab mass and acceleration. Density-profile modifi-
cation is caused by laser pressure. Plasma flows subsonically into the critical surface,
and supersonically out.

In an earlier Letter' exact transmission coeffi-
cients were calculated for intense light incident
on a plasma slab in which ions were frozen. In
this paper a steady-state model of a plasma. slab,
accelerated by its interaction with laser radiation,
is treated by one-dimensional (1D) steady-flow
hydrodynamic equations in an accelerated frame
of reference. The cold unablated fluid, the abla-
tion layer, both classical and flux-limited hot
conduction regions, the critical surface, and the
underdense blowoff are all considered. A global
description determines the temperature, density,

velocity, and boundaries as well. Approximate
analytic solutions are given in each of the plasma
regions.

The ablation layer, containing a steep density
gradient separating cold dense fluid from hot low-
density plasma, moves at the front of the thermal
wave and is accelerated by the rocket reaction to
the ablation. Nevertheless Boris has demonstrat-
ed through time-dependent numerical simulations
that the temperature profile at the ablation layer
is steady in an accelerated reference frame, and
provided a simplified analytic model of the steady



VOLUME $9, NUMBER 2 PHYSICWI. RZVlaW I.aTVZRS 11 JUr.v 1977

temperature profile at the ablation layer. 2

The quasi-steady-state model presented here
accounts self-consistently for the (slow) increase
in acceleration of the slab as a result of the di-
minishing mass of cold fluid being accelerated.
%bile a slab geometry reveals most of the impor-
tant physics, and will be used in forthcoming pa-
pers to consider flat-target experiments and in-
stability at the ablation layer, the model readily
transforms to a spherical geometry. Max, Mc-
Kee, and Mead' have found analytic steady-state
solutions for plasma flow in the hot conduction re-
gion of spherical laser targets, and Qitomer,
Morse, and Newberger~ have treated spherical
flow with an artificial mass source.

The model is formulated in terms of time-in-
dependent solutions of the continuity, momentum,
and energy equations,

BQ 80= = ——(pv)ex

80= —(pv)Bt

9 I,+ 2I„= ——(pv'+P)+pg — ' " 5(x-x,),~X C

80= —= ——(Pv+ gv+ q)+ pgv+ I 6(x —x ).Bx a C

Here v is the velocity of a volume element of
mass density p, temperature (in energy units) T,
pressure P= pT/m;, ion mass m;, and local en-
ergy density 8= -,'(3P+ pv~); I, (I„) is the absorbed
(reflected) laser flux. The laser energy and mo-
mentum are regarded as deposited at the critical
surface x=x, . The momentum-deposition term
causes gradient steepening and density shelves at
the critical surface that have been observed ex-
perimentally, 5 and calculated theoretically~ by
other means. The effective gravity g must be in-
cluded in the energy equation as the product of
force density pg with velocity v. It cannot be omit-
ted, as by Brueekner, Jorna, and Janda. ' The
heat flux q at any point in the hot conduction re-
gion is considered to be the lesser in magnitude
of the classical flux q„,„=—KT'I~T' and limited
flux q„=Lp(T/m;)'~~T' l T'I '. A prime denotes
d/dx, XT"I is the conductivity, and the flux-limit
parameter / lies in the author-dependent range'
0.5 a/&60. An upper bound, l&3, for this model
is derived below.

The continuity equation implies constant mo-
mentum density p6= poco. Fluid quantities evalu-
ated at the origin, chosen at the surface of maxi-
mum density, are denoted by a subscript zero.
Then the momentum and integrated energy equa-
tions in the overdense fluid simplify to two first-
order equations in p and T,

p'= p(T'-m; g) [m,v, '(p, /p)' —T) ',

q= {T,T', p) = —~(pavo/m;) f 5(T —Ta)+m, vo'(p~'/p' —1) —2m;gxJ KTOI"m;—g,
(2)

that can be solved by a Runge-Kutta code in classical-conduction and flux-limited regions. Solutions
near the ablation layer are shown in Fig, 1. The flux - T"~T' in the cold fluid rises monotonically to-
wards the heat source, but the temperature gradient T', while positive definite, is not necessarily
monotonic. At maximum density, To 'p conduction is enhanced by increased acceleration.

If the dimensionless gravity I'=(m KT,'"/povo)g and Mach number M=(m;vI/T)'~~ are both «1 in the
cold fluid, then approximate analytic solutions of (2) are

T= T0(1-~ISI'+ 2m,.gx/5TO), p =pa{1+3m,gx/5TO), (- Ta/m ,g ~ xe0). . (3)

Indeed the laminar ablation rate is generally much less than the local sound speed at the ablation layer
in ablative implosions, though not in exploding-pusher targets. A sonic point (M=1) can occur in the
cold fluid at

If M«1 and I"«1, then an approximate analytic solution of (2) in the hot classically conducting re-
gian, valid for 0~x~ T,/m, g, is

4m -Xr "'
x(T) = ' ' f(2~2- I)+ -5(H~'- I)+5(~'~' —1)J,

25povo
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FIG. 1. Temperature, density, and pressure profiles

at the ablation layer calculated from the model with Tp/
m; =10 ~ cm~/sec2, v0=2.2x10 cm/sec, pa=0. 3 g/cm,
and acceleration g=3&& 10~5 cm/sec~. Dashed curve,
analytic temperature approximation [Eqs. (8)-(4)].

in which ~= T/To. The analytic solutions (8) and

(4) for cold and hot conduction regions are com-
pared in Fig. 1 with the numerical solution of (2).
At high temperatures (4) can be inverted:

T= (25povo/4m Ã) x ——To~ T&& Tc.

At sufficiently high temperature and low density,
the heat flux may saturate in the overdense re-
gion. The solutions of (2) for both classical flux
and saturated flux are matched where q„, = q~.
In a saturated-flux region, (2) implies'

(5+M' —2I/M) T

=2m;gx+(5 —21 +Mc ) TO=2m;gx+5Tc. (5)

The gravity gives the Mach number a spatial de-
pendence and boost; the flow is assisted, and on-
set of flux limiting delayed.

At the critical surface, conservation of mass
requires p,v,=p v, so that the jumps in density
and velocity are related by

v, 4p= -p 4v.

The notation concerning the jump in any variable
u is defined by Au =- u+ —u —= u(x, + 0) —u(x, —0).
All energy deposited at the critical surface is as-
sumed to be conducted into the much more mas-
sive and colder overdense region, so that q=0 in
the underdense region, and an adiabatic equation
of state applies there Then wi.th ET= 0 and T(x,)

=- T„hq= —q(p, T,) &0. The jump conditions
from (1) are

b p = —m;(I, + 2I„)/(T, —m;v 'y)c,
Lv = (p —1)v,

(7)

v' —5(T,/m, ) [1 —(v, /v)"'] = v, '+ 2g(x —x,),

p = p,v, /v, T= T,(v, /v)"'.

On physical grounds T must decrease away from
the heat source at x, . Then (9) implies that the
flow out of the critical surface must be super-
sonic, m,.v, &&T,. The gravity determines the
boundaries self -consistently. Let the total plas-
ma mass per area, m, be specified. Since mo-
mentum density is uniform, during a time 5t a
thin layer of mass 6m = p „v„5t= p v 5t is effec-

where y=—[1+2(I,—hq)/p v ']"s. The case is
considered for which the heat conducted away
from x, does not exceed the laser energy deposit-
ed there, so that y &1. Together (8) and (7) imply

I,+2I„=(p c/m, )(T, —m, v my)(1 —1/y). (8)

Since I,+2I„&0 and y&l, then m,.v 2&T,. Thus
steady flow into the critical surface is subsonic
in the rest frame of the critical surface. 9 Then
(5) implies that the flux-limit parameter l must
be less than 3 for a flux-limited region to exist
in steady state. This upper bound is comparable
with recent experimental values and theoretical
predictions. '"

Mass, momentum, and energy conservation
across the critical surface insufficiently con-
strain the solution. ' A reasonable added con-
straint derived in Ref. 6 for a related problem,
and independent of ponderomotive force, is p
= —,p, [M '-ln(M ') —1](1-M ) '. The density
shelves and subsonic flow into the critical sur-
face are features of other theoretical treatments'
as well, and are seen here to be caused exclusive-
ly by laser momentum deposition. Ordinarily a
ponderomotive-force term proportional to pd IEI'/
dx is appended to the momentum equation to mod-
el the effects of the electric field E in the under-
dense region, imposing spatially periodic fluctua-
tions on density and velocity profiles. In this
model the momentum equation is averaged over
many wavelengths to iron out the effects of the
ponderomotive force, (pd IEI'/dx)„=0, and leave
only the gross profiles of the steady flow of an
ideal, adiabatic gas in the underdense region.

The exact solutions of (1) for the underdense,
adiabatic gas are

86
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FIG. 2. Density, temperature, and Mach-number pro-
files of global slab model. Specified were the absorbed
flux I =10.2 TW/cm2, reflected flux I =10.2 TW/cm2,
total mass m = 0.738 mg/cm, acceleration g = Sx 10'
cm/sec2, critical density p~=4&& 10 ~ g/cm3, and criti-
cal temperature T /m; =4.50X 10 4 cm2/sec2; the coef-
ficient of conductivity was E =10 33m; 7~ (cgs). Self-
consistency of the global model required a critical sur-
face ate, , left and right boundaries at x~ and xR, and
upper and lower shelf densities p and p+ as shown. No
saturation of heat flux occurs here for the flux-limit
parameter l & 1.79.

tively transferred from the left boundary x„ to
the right boundary xR at higher velocity e~. The
change in momentum, 5P = 5m(v R

—v „), must be
compensated by an acceleration of the whole plas-
ma to the left, since the hydrodynamic forces
are internal, causing an effective gravity

g= p v (v R
—vg)/m.

This condition determines the approximate slab
boundaries, and completes the global description
of the laser-plasma interaction. Figure 2 shows
the self-consistent profiles and boundaries found

by specifying I„ I„, m, g, p„and T, only.
Since the jump conditions are not satisfied at

the slab boundaries, the steady-state assumption
breaks down near the boundaries. Equation (10)
is good, however, as long as the widths of the un-
steady slab ends are much less than the overall
width of the slab. The gravity increases,

dg/dt= p v (dva ldx —dv, '/dx)/2m,

and can only be considered steady during an in-
terval At if

bt«2(va -v„)/(dvR /dx-dv„'/dx). (11)

If the cold fluid is no wider than about Tc/m; g,
and the underdense region is wider than about T, /
m, g, then (3), (9), and (11) imply a characteris-
tic time scale for growth of the acceleration of
v R/g. The dynamical development of a slab can
be followed over longer time periods by respeci-
fying gravity and intensity if desired, and repeat-
ing the integration of (2).
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