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Dielectric and Brillouin scattering experiments on a lithium ammonium tartrate crystal
have shown that the transition in this crystal is described by the free energy of a piezo-

electric crystal,

F=5(x""P? +aPx +3B(T - T)x*,

where the primary order parameter is the homogeneous strain, which gives rise to ferro-
electricity through the piezoelectric coupling with the polarization.

At present, ferroelasticity is a well-accepted
concept. However, many ferroelastic crystals
so far reported do not undergo the “proper ferro-
elastic” transition in which the primary order pa-
rameters is the homogeneous strain x. Here, we
treat the ferroelastic transition, which is de-
scribed by the free energy with a bilinear coup-
ling term,

F=3x*)""P? +aPx +3CF%x*, (1)
and we conclude that the transition of LiNH,C,H,O,
*H,0 (LAT) at 98 K is a “proper ferroelastic”
transition.

In KH,PO,, the transition is well described by
the free energy

F,=30(T = T,)P?+aPx+3CPx?, (2)

where the piezoelectric coefficient ¢ and the elas-

tic stiffness at constant polarization, C*, are in-
dependent of temperature. In the early stages of
the investigation of Gd,(MoQ,),;, the transition

was suggested to be described by the free energy

Fo=5(x*)"'"P? +aPx +3B(T - Tox?, 3)

where a and the clamped inverse susceptibility
(x*)”! are independent of temperature. Gd,(MoO,),
was, however, shown to undergo the transition
because of the softening of zone-boundary pho-
nons,' and is not described by Eq. (3).

The present work reports the observation of
the ferroelastic transition, described by the free
energy F, [Eq. (3)], in the crystal LiNH,C,H,O,
*H,0. LAT undergoes the transition at 7 =98 K,
the ferroelectric phase below T, belongs to P12,1,
and the paraelectric phase above T, belongs to
P2,2,2, According to the ESR study of Cr®* in
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LAT,? each resonance line gives rise to splitting
when the sample is lowered into the ferroelectric
phase. The number of split lines can be complete-
ly explained by taking account of both the lower-
ing of the point-group symmetry and the forma-
tion and switching of ferroelectric domains. Com-
parison with ESR experiments on ammonium ro-
chelle salt excludes the possibility of the multi-
plication of the primitive unit cell in LAT. We
observed no TO soft mode, characteristic of the
lattice dynamical transition, and no anomalous
temperature dependence of Raman-active mode
through the phase-transition point.

From the free energy with a piezoelectric coup-
ling term [Eq. (1)], the free inverse susceptibili-
ty (x*)"" and the elastic stiffness at constant elec-
tric field E are given, respectively, by

xX*) =)t -a?/CP,

CE=CP-2/(c)",
From Eqs. (4), the relation

CE/CP=(* )"/ ()t (5)

is obtained.

Now, we are interested in the comparison be-
tween the two cases: Case I is the dielectric in-
stability transition described by the free energy
F, [Eq. (2)], in which

4)

x*) ' =a(T = Ty); (6)
from Eqgs. (4) and (8),

¥ t=a(T-T,) (7)
and

CE=CHT-T,)/(T-T,) (8)

should result, where the transition point T, is
the temperature at which x* diverges, and

T,-Ty=d"/aC¥. (9)

This situation is schematically shown in Fig, 1(a),
as confirmed by Bordy and Cummins in potassium
dihydrogen phosphate.?

Case II is the elastic instability (proper ferro-
elastic) transition described by F, [Eq. (3)], in
which

CP =B(T - T,); (10)
from Eqgs. (4) and (10),

M) =) UT =T/ (T - T), (11)

CE=p(T-T,)), (12)

should result, as schematically shown in Fig.
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FIG. 1. Schematic representation of temperature
dependence of (x*) !, (x¥)"1, cE, ¢?, k™, and (da)"';
(a) for the dielectric instability transition, (b) for the
elastic instability (proper ferroelastic) transition. The
dashed line T =T, is the asymptote of a hyperbola,

1(b), where the transition point 7', is the temper-
ature at which C¥ vanishes, and

T,-Ty=a?/[B(x*)"*]

[as can be seen from Eqs. (4), (10), and (12)].
CP and C® have the same slope [as can be seen
from Eqs. (10) and (12)].

Our dielectric measurements in LAT have
shown that the clamped susceptibility (x,,*)"*
(measured at 2 MHz) is essentially temperature
independent, and the free susceptibility (x,,%)""
(measured at 2 kHz) has been well fitted by a
hyperbola [Eq. (11)] with the asymptote 7 =T,
as shown in Fig. 2(a), which bears all the traits
of the dielectric properties of the elastic insta-
bility transition seen in Fig. 1(a). The tempera-
ture 7, was estimated to be 4 K lower than 7.
Equation (11) can be rewritten in the form of the
Curie-Weiss law,

(13)

Xoa® =Xas" +C/(T = T,),

with the Curie-Weiss constant C=yx,,"(T, - T,).
By replotting the experimental data given in Fig.
2(a), Eq. (14) has been found to hold well in LAT,

(14)
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FIG. 2, Temperature dependence of (a) (x*)~! and
(x¥)~1 (relative susceptibilities); (b) ¢Z and ¢?; and
(¢) 2% and (de)"! in LiNH,C,H,O+ H,O. Quantities in
(a) and (c) are dimensionless.

and the value of C has been determined to be 2 K
(extremely small). This value is in good agree-
ment with the value calculated from C=x,,*(T,

- T,) with use of the experimental value x,,*=0.5
at 2 MHz and the difference (7,- T,)=4 K. These
results of dielectric measurements provides
strong support to our proposal that the free en-
ergy of LAT can be described by Eq. (3). From
Raman scattering experiments our finding that
soft phonon does not exist is reasonable, judging
from the fact that tartrate-class ferroelectrics
undergo the order-disorder transition. Further-
more, the possibility of the order-disorder tran-
sition in LAT is excluded because yx,,* is very
small (0.5) at 2 MHz and no relaxation is expect-
ed in the microwave region.

Brillouin scattering experiments in LAT by
Udagawa, Kohn, and Nakamura® have been done
in a right-angle scattering geometry, with excita-
tion provided by a stabilized single-mode argon-
ion laser operating at 5145 A. The spectra were
obtained using a double-pass pressure-scanned
Fabry-Perot interferometer. Temperature was
controlled within 0.1 K, No refractive-index—
matching liquid was used. The observed compo-
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FIG, 3. Temperature dependence of elastic stiffness
Csf of LAT.

nents are longitudinal C,,, C,,, and C,; modes,
and the transverse C,; mode. The elastic stiff-
ness C,* is highly temperature dependent (Fig.
3), while C,;, C,,, and C,, only slightly increase
with decreasing temperature from room tempera-
ture to 98 K. The elastic stiffness C . as a func-
tion of temperature is fitted by a straight line
[Eq. (12)] in the temperature range (7 - T,)~20 K
[Fig. 2(b)], by observing the softening of the
acoustic phonon towards 7T,. This is what is ex-
pected for the elastic instability transition [Fig.
1(b)]. By introducing temperature dependence in-
to the experimental value of X%, X2, and C,°
in Eq. (5), C,;* has been obtained as a function of
temperature. In the temperature region (T - T,)
~20 K, C,,P(T) is represented by a straight line,

CP=B(T-T,), (15)

which crosses with the temperature axis at T,
This relation is identical with the primary attrib-
ute of elastic instability transition, Eq. (10) [see
also Fig. 1(b)]. Note that this relation [Eq. (10)]
may be an approximation valid only for the tem-
perature region just in the vicinity of 7,,. The de-
viation of the curves in Fig, 2(b) from straight
lines does not contradict assumption (10). The
slope of C,P(T) is equal to that of C,B(T). The
difference (T, - T,) [given by Eq. (13)] has been
found to be 5 K, in agreement with that estimated
from the dielectric measurements.

From the dielectric measurements above, the
inverse electromechanical-coupling factor %~ 2
and the quantity (da)™' (with d the piezoelectric
modulus) have been found to be both straight lines
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in the vicinity of 7', [Fig. 2(c)]:
B2 =00/ (X0 = X22") = A(T = T,), (16)
(dasz5)™ " =X20"/ (Xaz™ = X22") =A(T=T,).  (17)
From the free energy F [Eq. (1)], the relations
kB 2=CP(x*)"'/ad?, (18)
(da)y '=CP(*) '/ a®=CE(x*)" '/, (19)

are derived. In both cases I and II, %k® and da di-
verge (Fig. 1). Therefore, the experimental re-
sults (16) and (17) provide strong support that
LAT is described by the free energy F, [Eq. (3)].
Furthermore, the temperature dependence of x*,
x*, CZ, and CP clearly shows that LAT belongs
to case II.

So far many crystals have been reported to un-
dergo the transition at which the elastic stiffness
vanishes. In some crystals such as TbVO,® and
Nb,Sn,® the transition is known to take place pri-
marily as a result of the Jahn-Teller instability;
and because of the coupling between such mecha-
nism and strain, the softening of the acoustic
phonon is induced (that is, not “proper ferroelas-
tic”). In some crystals such as TeO,,” PrAlO,®
and KH,(SeO,),’ it has been reported that the ho-
mogeneous strain is the sole order parameter for
the transition. On the other hand, in the piezo-
electric crystals such as the LAT under study
here, the distinction between whether it is “prop-
er ferroelastic” or not is very clear—constant

x* and vanishing C® constitute the sufficient con-
ditions for the “proper ferroelastic” transition.
This result and its implication do not appear to
have been emphasized earlier.
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The dipolar broadening of the magnetic field sensed by an interstitial impurity in a rigid
lattice is calculated with the electric-field gradient set up by the impurity taken into ac-
count. This is shown to give a strong dependence of the dipolar width on the applied mag-
netic field. The theory is especially applicable to the linewidth of precessing muons in

metals.

The broadening, due to dipolar coupling, of
magnetic resonance lines of nuclear spins I in
solids was derived by Van Vleck® to be

29 _1)2
Awp =2y HRI(0+ 1)2)-(—3—00%63—9— 1)

for the broadening due to like spins, and

- 2p _1)2
Aw,? =§y12752h’28(8+1)2@(£r§—-1—) 2)

832

for the broadening due to unlike spins, i.e., gyro-
magnetic ratios y;#ys. The equations are valid
if the spins are subject to a static magnetic field
B =B, substantially larger than the dipolar fields,
which are typically of the order of 1 G for nu-
clear spins in solids.

In Eq. (2), spin-flip terms of the type I,S. are
absent, and it can be considered as the random
sum of the dipolar fields from all the spins S at



