
VOLUME 39, NUMBER 13 PHYSICAL REVIEW LETTERS 26 SEPTEMBER 1977

Dependence of Four-Body Observables on the Range of Effective Interactions Like Those
of the Unitary Pole Approximation
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A generalized unitary pole approximation concerning the three-body amplitudes in the
kernel of four-body integral equations is introduced. We furthermore study the depen-
dence of the He binding energy and of four-body cross sections upon a position-space
cut-off parameter in the effective interactions.

Some effort has been made during the last years
to study the four-nucleon system by means of in-
tegral equations. Essentially all these investiga-
tions are based on reducing the original four-
body operator identities to manageable effective
two-body equations. Such a reduction procedure
has been developed' and its efficiency was tested
in a first numerical calculation by Alt, Grass-
berger, and Sandhas. '

In more recent investigations remarkable im-
provement has been achieved by using a better
suited tsvo-body input (Gaussian' instead of Yama-
guchi form factors, Malfliet-Tjon potential ~).
Moreover, as compared to Refs. 1 and 2, a high-
er number of separable terms in the Hilbert-
Schmidt (or Bateman)" expansion of the effective
interactions is usually incorporated. +"'

Instead of these expansions we introduce in the
present Letter a generalization of the unitary
pole approximation (UPA) which now, however,
concerns the three-body amplitudes in the kernel
of the four-body equations. We furthermore
study the dependence of the ~He binding energy,
and of the d+d-p+t and p+t-p+t cross sec-
tions upon a position-space cut off paramete-r.

The first step of the reduction scheme devel-
oped in Refs. 1 and 2 consists in replacing the
two-body potentials by (a series of) separable
terms, a procedure well known from the thr'ee-
body problem. Here we restrict ourselves to the
usual rank-one separable potentials with Yamagu-
chi and Gaussian form factors g, (p). The param-
eters ing, .(p) are adjusted to the following effec-
tive-range values a, = 5.46 fm, a c, = —24.56 fm,

x,~ = 1.91 fm, ~, c, = 2.66 fm in the deuteron and
antibound-state channels i =d, C. The two-body
transition amplitudes then take the well-known
separable form (valid also in the two-body UPA)

&;(p,P',E) =a;(P)t;(E)a;(P'),
OO 2( If) 1

t (E)= ~ '-m dp"p"'i 0 mE -p"'

Herewith the original four-body identities are
reduced to effective three-body equations.

Expanding in a second step also the kernel of
these equations into a series of separable terms,
an effective bvo-body formulation is achieved'~'
as in the genuine three-body case. Convention-
ally this step is based on separable expansions
of the effective "potentials" v, ,(z) =(g,.lG, (z)lg, )
with "form factors" G, (q, z) usually chosen as
Sturmian functions. I.e. , they are defined as
eigenfunctions of the "LS-kernel" built up by the
potential v, ,(z) and the "free Green's function"
t,.(z). Fixing here the energy variable z in an ap-
propriate way (e.g. , subsystem pole energy), the
corresponding eigenvalue equation takes the form
(4), providing z-independent form factors G„(q).
This definition is evidently analogous to the one
in the two-body UPA. We, therefore, consider
our approach as the correct generalization of the
two-body UPA idea to the three-body subsystems.
The reduction of the numerical effort achieved in
this way is, of course, considerable.

With the approximations discussed above our
basic effective equations of the four-nucleon prob-
lem read

T~.,„I'(q,q', E) =V~. I'(q, q', E)+Q„j, V~. I'(q, q";E)7„(E-a"q"')T~.„„"(q",q', E)q'"dq",

where

(2)

2/Sm for n =(3+1),
1/2m for n =(2+2).
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The index I denotes the relative partial waves of the clusters, I,S are the quantum numbers of the to-
tal isospin and spin, respectively, while s, x, n, collectively denote the fragmentations (3+1) or (2+2)
and the further quantum numbers of the clusters. The effective potentials in the Lippmann-Schwinger-
(LS-) type equation (2) are

V~., 's(q, q', E) =Q;I'~.„2f, dx P~(x)G „.(q, )t, (E —Z2/m)G, . (q,) (3)

with

in the (3+1)-(3+1) channel F. or (2+2)- (3+1)we have

and for (3+1)-(2+2)

I'~. ,„,.' are the usual coefficients due to four-body symmetrization and spin-isospin recoupling.
The three-body UPA form factors are defined by

G. (q) =n, ' 2 A;; f.dq'q" ~;,'(q, q')t;(E.;-Q')G.;"(q') (4)

with

(3/4m)q" for (3+1),
(I/m)q" for (2+2),

i.e. , by the effective LS equations of the underlying subsystems (A,.; are the well-known three-body re-
coupling coefficients). The potentials 1/, , have the forms (5a) and (5b) in the (3+1) and (2+2) cases,
respectively,

(5a)

a;(q) a;(q')
iJ (q/q ) E ~-1(q2+q/2) ' (5b)

If the system described by Eq. (4) possesses a bound state (e.g. , triton, or deuteron + deuteron, etc.),
E„ is adjusted to the respective binding energy, and Eq. (4) has a solution with q, =1. In the other
cases, where no bound states exist, we get eigenvalues g, 4 1, fixing E„.at the antibound-state energy.
We mention that the effective amplitudes corresponding to the UPA expansion of ~~, , have the form

T;,'(q, q";E) = G„(q)t,(E)G„(q"); r,(E) ={-g, ' f, G„'-(q')t;(E -Q')q"dq'j (6)

Here the normalization has been chosen such that the integral term in Eq. (6) is equal to -1 if E =E„.
Comparison of Eq. (6) and Eg. (1) makes the analogy of the three-body VPA introduced here to the usu-
al two-body UPA' particularly transparent.

Of remarkable physical interest is the relationship between three-body and four-body observables.
This has been considered already by Tjon' and Sofianos, Fiedeldey, and McGurk" by varying the two-
body input. In the present investigation the same question is studied by changing the 1ange of the ef
fectige potentials. For this purpose expression (5a) is transformed to position space. Introducing cut-
off parameters a„a, for both position variables R, and R, of the nonlocal potential and retransforming
to momentum space we obtain

p S(q q I) (4/p2) f f f (q q
ll.

/2 ) 1/ S(qll q ill)f (q lll
q

/.
/2 )q //2q lll2dq lldq lll

fo(q, q'; a~) = (a2/2qq') f jo((q -q')a2) jo((q+ q')a„) ],-
where jo(qa„) is the spherical Bessel function. Such a. procedure allows us to simulate the repulsion in
the three-body system. We mention that the various three-body binding energies found by varying a,
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and a, independently could also be achieved by
varying only az and putting a, = . This simplify-
ing choice is used in the following.

The difficulties originating from the sign oscil-
lations of j„characteristic of entire functions,
suggest to solve Eq. (4) with potential (7) by ex-
panding the unknown form factors in an appropri-
ate set, complete in the domain where V, ,'(R„q')
differs from zero. We choose the set proposed
by Brayshaw, "namely the eigenfunctions of the
two-particle I,ippmann-Schwinger equation in the
case of a unit square-well potential with range
0 z The expansion of the form factors conver ge s
quite rapidly (to better than 0.5% after the sev-
enth term).

The simplifying approximation procedure just
described has also been applied to the potential
(5b) of the (2+2) channel. But since there the
cut-off parameter is introduced only for the tech-
nical reasons explained, a, has been chosen so
large that its effect on the solution becomes neg-
ligible (a, &6 fm). Note that the analytic repre-
sentation of the form factors G(q) achieved in this
way is particularly useful in scattering calcula-
tions, where the contour deformation method re-
quires the knowledge of G(q) for complex argu-
ment.

To obtain the 4He binding energy we use matrix
inversion with the Gaussian net of 20 x 20 mesh
points. The angular integration of the effective
potentials has been performed with sixteen Gauss
points. A numerical accuracy of better than 1%
has been estimated by varying the distribution and
number of mesh points.

Table I shows the correlation between the tri-
ton and 'He binding energies for several cut-off
parameters az. In Fig. 1 we plot E„against E,

50-
-Eg( MeV

and compare the results with the Tjon line. 4 The
strong linear relation between E and E„em-
phasized by Tjon, 4 is found also in our calcula-
tion, despite the fact that E, is not changed by
varying the two-body input but by cutting off the
long-range parts of the effective potentials in
the (3+ 1) channel. However, the slopes of the
straight lines in the Tjon plot turn out to be dif-
ferent for different two-body potentials. This
observation is supported by the fact that the bind-
ing energies obtained by Narodetskii' and Khar-
chenko' for Yamaguchi potentials and by Becker'
and Kroger" in the Gauss case lie just on the
corresponding lines in our calculation. We final-
ly mention that for parameters az which lead to
the exact experimental value of E, the 'He binding
energy is reasonably well approximated.

In order to get a first crude insight into the in-
fluence of the cut-off parameter az on cross sec-
tions, we apply the K-matrix Born approxima-
tion introduced in Ref. 2. The results, presented
in Fig. 2, show that the variation of az mainly af-
fects the forward direction of the reaction d+d
-f+p. As expected, a stronger repulsion, sim-
ulated by a smaller a„reduces the magnitude of
the forward peak. We particularly emphasize

TABLE l. Triton binding energies (p, ) and He bind-
ing energies (p ) as a function of the cut-off parame-
ter a,. 30

a&

(fm)
&n

(MeV)

pamaguchi
p]

(MeV)
a&

(fm)

Gauss

(MeV)
&n

(MeV)

2.5
2.7
3.0
3.25
3.5
4.5
5.0
6.0
7.0

—6.47
7y32

—8.33
—8.93
—9.29
—9.79

—10.16
—10.20
—10.21

—23.38
—2'7. 14
—31,42
—33.81
—35.02
—36.93
—40.11
—41.29
—41.86

3.5
4.5
5.0
6.0

7+ 72
—8.35
—8.81
—8.93

—26.65
—28.73
—31.85
—33.02

$0

10

-E( [Mg Y]

FIG. l. Tjon plot of p against F'& for cut-off param-
eters a& tabulated in Table I, using Yamaguchi form
factors —-X-—X, and Gaussian form factors .——-g

The results are compared with those of Ref. 4,
- O—Ref. 10, ———~ --—~ ~ Ref. 8, ~ ~ Ref. 7,

O; Ref. 3, g; and Ref. 12, p.
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Summarizing we conclude that the three-body
UPA proposed here represents a very efficient
method for reducing the numerical effort in four-
body calculations, Its clear physical meaning,
moreover, provides a natural tool for studying
the dependence of four-body observables on var-
iations of the effective potentials.

One of us (R.P.) was supported by the Studien-
stiftung des Deutschen Volkes.
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FIG. 2. Differential d + d —p + t and p + t —p + t
cross sections. Depicted are (a)-(c) results for Yam-
aguchi form factors and cut-off parameters a, = 5 fm
( ), a) = 3.25 fm (—-), a&= 3 fm (-~ —~ ), a&= 2.7 fm
(~ ~ ~ ). Furthermore, (d)-(f) results for Gaussian form
factors and cut-off parameters a& = 5 fm ( ), a, = 4.5
fm (—-), and a, = 3.5 fm (-~ —~ ). Experimental points
are from Refs. 13-16.

that the best fit is obtained for a value of the cut-
off parameter which just leads to the experimen-
tal triton binding energy and consequently to a
reasonable result for E . For completeness we

have added in Fig. 2 one cr oss section for the
process t+p-t+p, despite the fact that the K-
matrix Born approximation is known to be less
justified in this case. Calculations which go be-
yond the K-matrix approximation are in prog-
ress.
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