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A proper treatment of the continuous-time random-walk problem leads to a frequency-
dependent conductivity in agreement with our earlier work.

The problem to be solved is the ac conductivity
o(v) induced by a carrier hopping among a spa-
tially random distribution of localized sites with
the jump rate varying rapidly (exponentially) with
the separation between pairs of sites.

The present authors' (SL) have replaced this in-
tractable problem by a regular array of sites
with a probability y(t)dt for a hop between succes-
sive sites in the time interval (t, t+dt) To in.-
sure that this continuous-time random-walk
(CTRW) representation of the original problem
is reasonable, the density g(t) is chosen to re-
flect the distribution of jump rates associated
with the distribution of site separations in the
original problem. Successive jumps are treated
as independent with the same available-jump-
time distribution. The success of our procedure
in correlating with the experimental frequency
dependence of co ' is related to the ergodic nature
of the conductivity process. In traversing the
crystal a carrier samples a wide variety of en-
vironments. The distribution of hopping times
over the entire crystal is, in our model, folded
into the hopping-time distribution of a single site.
In a discussion of our model Tunaley' predicted
a frequency-independent conductivity.

Tunaley' has made a literal interpretation of

our CTRW procedure as an ongoing renetoal Pro-
cess. A renewal process is a stochastic sequence
of events in which the time interval between suc-
cessive events (steps, or hops) is goverried by a
common normalized probability density y(t). He
then invokes a theorem of Feller which states
that for such a process the first step starting
from a random time of observation has a density
h(t) which differs from the density g(t) which de-
scribes the time intervals between all subsequent
steps. An unfortuante consequence is that the
conductivity obtained by convoluting h(t) for the
first step with an arbitrary number of g(t) steps
leads to a frequency-independent conductivity, in
complete disagreement with experiment and with
calculations in SL.

Our point is that identification of the hopping
problem with a renewal process (ongoing for a
long time) prevents an investigation of the fre-
quency dependence of the conductivity. Feller
constructs the h(t) so that a uniform occurrence
rate for the events (hops) is insured at a random
time. This uniform occurrence rate is equival-
ent to a time-independent flux and, therefore, a
frequency-independent conductivity. Thus we do
not suggest that Feller's theorem is incorrect,
but that the hopping problem cannot be directly
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g(t I &) = ((t+ 7)/@(&) (2)i

reduced to an ongoing renewal process (as Tuna-
ley did) without a careful examination of the un-
derlying physical problem.

We shall show later that, because of the nature
of Gibbsian ensembles, the bias introduced by
Tunaley into the first step should not be applied
to an impurity hopping problem. To understand
the nature of this bias we first shall supply a
new, succinct proof of Feller's theorem. We
shall introduce an equivalent but more informa-
tive expression for the first-step density Pi(t),
This expression depends on the conditional wait-
ing-time density, a quantity not considered or
evaluated by Feller. We now define

4(7) = J g(t) dt

as the probability of no event occurring in time
~ after the last event, and use

k(t) = J, y(t~~)C(~) d~/f C(~)d~.

This instructive expression for k(t) is equivalent
to the one presented in Feller's theorem:

k(t) = [I f-' j,(7.)d~J/t, (4)

where

t =f,"t g(t—) dt = J "4 (t) dt.

For some examples g(t) can be expressed as a
superposition of jump rates so that

g(t) = f w exp( wt)—p(w) dw;

then from Eq. (4) for k(t), we get

(6)

as the conditional density for an event at a time
t knowing that a time v has already elapsed since
the last event. Thus g(t) = $(t~0). To obtain k(t)
we must average g(t~~) over the density 4(~) of
lifetimes v'.

Pw " w
k(t) = w exp( —wt) dw dw

0 0 N
(7)

If one compares Eq. (7) with Eq. (6) we see that the bias on the first hop is a weighting by the lifetime
factor 1/w.

The conductivity o(&o) was shown in Sl., by linear-response theory, to be reducible to

a(&u) = (ne'/kT)D(cv),

where the complex frequency-dependent diffusion constant D(&e) is given by

D((u)= ——,'(u'J e ' 'tr((r(t) —r(0)J'pfdt

(8)

D(e) = ——,'aP Q (s —so)'f (P(s, t; s„0;W))e '"'dt,
S, SO

where P(s, t; so, 0; W) is the thermal-averaged two-time probability distribution for finding a carrier
at Ko at time 0 and 5 at time t for a given configuration described by a set of transition probabilities
W-, -, summarized briefly by the symbol W. The angular brackets represent an average over configu-
rations.

If f(s, W) is the steady-state distribution for a particular configuration of impurities characterized
by W and P(s, t, W is„O) is the conditional probability for arriving at s at time t given a start at s, at
time 0 associated with the same configuration, then the ensemble-averaged two-time distribution is
given by

(P(s, t; s„O; W)) = (P(s, t, W Is„O)f(s„W)).

If a particular site s, in a particular configuration has few near neighbors so that the rate of leaving
the site is low, we expect the occupancy probability f (so, W) to be proportional to the reciprocal

(Z-W- -) '

of the total rate of leaving site s, . This lifetime bias factor, which is shown in Eq. (7) to modify the
first-hopping probability, thus manifests itself in the dependence on W of the steady-state occupancy

(12)

and p is the density operator, The ac conductivity in Eqs. (8) and (9) is proportional to a Fourier com-
ponent of the mean-square displacement in the field-free ensemble. In the hopping-conductivity prob-
lem, Eq. (9) ean be reduced' to a sum over discrete sites so that
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f(s„W). The effect desired by Tunaley is then produced by the correlation between the conditions, l
probability and the occupancy factor in Eq. (11) induced by the dependence of both these factors on W.

It must be recognized, however, that in a Qibbsian ensemble, site so with a given energy E, has an
occupancy probability determined by F, and the temperature T and independent of the transition rates:

f(s., W) =f(s.).
(This result follows from the fact that detailed balance is maintained in each member of the ensemble,
so that if the jump rate is reduced from site I to 2 it must be reduced proportionately from 2 to 1,
thus maintaining the occupancy probabilities independent of the transition rates. ) Without approxima-
tion, therefore, we can use

( P(s, t; s„0;W)) = (P(s, t, W Is„0))f(s,). (14)

Thus only the conditional probability remains to be computed. The CTRW model is therefore applied
only to the conditional probability and not to the two-time probability in order to maintain the exact re-
lation, Eq. (14). Furthermore, Eq. (14) tells us to start our carrier definitely at position s„ thus pro-
viding an initial condition for the CTRW problem. Only at the final stage of evaluating the diffusion co-
efficient by means of Eqs. (10), (11), and (14) does one average over the density f (s,) of initial posi-
tions.

The conditional probability will be written below as a sum of terms. The nth term is the probability
for getting from so to s in n steps. This nth term can be factored into probabilities for each step. The
factor for the first step is identical to the factor for later steps. Since the factor f(s,) has been sePa
rated, there is no zoay to treat the first step differently from the later steps. Thus, biasing of the first
step, proposed in Ref. 2, does not occur.

Let us consider now the random-walk problem on a cubic lattice with jump rate W~-, , from s to s.
The probability density P(s, t, W Is„0) conditioned on starting at site s, at time 0 obeys

BP(s, t, W)/St = —I'-, P(s, t) +Q W-, -, ,P(s', t),

where

(15)

and for simplicity of notation we have suppressed the initial conditions. Then the Laplace transform

P( s, u, W Is„0)=—J, e "'P(s, t, Wis„O) dt

obeys

(u + F;)P(s, u) = Q;,Wr -, P(s ', u) + 5; -, ,

P(s, u, Wis„O) =C(s, u, W)[((s —s„u, W)+g(s -s', u, W)g(s' —s„u, W)

+g(s —s', u, W)g(s' —s", u, W)g(s" —s„u, W)+. . .J,

where repeated indices are understood to be summed and

q(4-f', u, W)
-=W;r, /(u+r-, ,),

C(s, u, W) =-1/(u+r-, ).

(18)

(19)

(20)

(21)

Suppose now that the W-, -, , are not fixed but selected from an ensemble of possible values compatible
with statistical mechanics. Then an ensemble average must be taken over the right-hand side of Eq.
(19). Because the factor f(s,) does not enter this average, as shown in Eq. (14), the P associated with
the first jump [the last factor in any term of Eq. (19)J appears on an equal footing with all other y's
and does not receive the special treatment advocated by Tunaley.

The CTRW procedure which treats all sites as equivalent and independent corresponds in the present
language to a fa,ctorized ("Hartree approximation") average of Eq. (19) which leads to

P (s, ui s„O) = 4 (s, u) [ g (s —s„u) + It (s —s ', u) g(s ' —so, u)

+ g(s —s', u)g(s'- s",u) g(s" —s„u) +. . .], (22)
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where

(23)

(24)

Equation (22) is identical to the result of our CTRW procedure. ' Since 7/(s —s', u) is the Laplace trans-
form of g(s —0', t), the latter is defined by

g(s —s', t)—:( W-, -, , exp(- I'-, ,t)). (25)

The definition, Eq. (25), was in fact used by SL to calculate ((s —s', t).
The factorization procedure is the approximation which makes the resulting problem tractable. A

treatment including the effects of correlations between jumps would be desirable, but it too must treat
the first jump on an equal footing with the others. The main point of the above discussion is that as a
consequence of the general validity of statistical mechanics the occupancy f(so) associated with the
starting point factors out, and all jumps, including the first, are to be treated alike.
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J. K. E. Tunaley, Phys. Rev. Lett. 33, 1037 (1974).
W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971), Vol. 2, 2nd ed. ,

Chap. XI, Sect. 4.
For a more complete discussion, the reader is referred to Appendix B of Ref. 1, where a comparison is made

between the procedure outlined here and the ensemble average of a random walk on a random media.
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Astronomical observations at the x-ray, optical, and radio frequencies are used to
show that the lifetime of neutrinos for radiative decay divided by the rest mass, ~~/mv,
exceeds 10 sec/eV. If one makes the further assumption that mv &10 3 eV, then wo

~10~~

sec. If there are other competing decays of neutrinos, it is then shown that I'„(v —x+y)/~eI', (total) -10 "and I", (v& —x+y)/I'„(total) ~ 2&& 10
V

In this paper I discuss the limits that can be
placed on the radiative instability of the neutrinos
from various kinds of observations. In this re-
gard I am motivated by several recent papers' '
which have considered the possibility that neutri-
nos could have finite rest mass and could there-
fore decay. One particular set of these"4 consid-
ers the mixing of v, and v& and predicts observa-
ble widths for the lepton-number-nonconserving
decays, such as p, -e+y and v„- v, +y. Indepen-
dent of such theoretical considerations it is worth-
while to study the observational limits on such
processes.

The astrophysical environment provides excel-
lent possibilities for such a study of very weak
processes: Path lengths of - 10 8 cm are avaj. la-
ble for the decay process to take place, huge in
comparison with the - 10' cm available in most

laboratory studies. Also there are regions, such
as the cores of very hot stars, where the weak
processes dominate, as the products of the com-
peting electromagnetic channels are suppressed
completely because of the enormous time scales
needed for the diffusion of photons to the stellar
surface. '

Recognizing that both neutral and charged cur-
rents are of comparable strength in weak inter-
actions, one finds that tI@re are several loca-
tions in nature where copious generation of v„
v„, etc. , takes place. In this Letter I consider
at first that the neutrino decays solely through
the channel

where x is any particle with a mass smaller than
m„and consider later the effects due to compet-
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