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0, to be determined with three pieces of data
namely z, g, and the tilt angle ~. The tilt angle
is indeed expected to be different from e„and
given by

tanm =(~tan8~)(cosy), (2)

as can be easily inferred from geometrical con-siderationss.

Choosing u =64', with y =0.242, g=0.24, and cu

= 28' (the values for 134.5'C) we have found the
following solution: 8o= 31.2, (58')"'=22', (cosy)
=0.97 corresponding to (hy')'~'~ 14'. This corre-
sponds to an average amplitude fluctuation of the
axis of about 20, a value which is fairly consis-
tent with what was estimated from the NQES re-
sults. ' The fact that g decreases while y remains
practically constant when the temperature is in-
creased in the H phase is easily accounted for by
an increase of the azimuthal fluctuation ampli-
tude. For 139 C, we have found (58')'~'~22 and

(cosy) =0.94 corresponding to Q y')'I'~20 .
In conclusion, for the VI phase, the present

NQR and NQES results are quite consistent with

one another but both do not allow discrimination
between the various models. Model C is favored
from other considerations. ' For the H phase,
the NQR results are consistent either with a. uni-
axial model with weak orientational ordering, or
with a model permitting uniform rotation around
the long axis and fluctuation of this axis. In this
case, the latter should be favored since it agrees
with the NQES results while the former does

not. ' '
Finally, concerning the smectic-C phase, since

the situation is essentially the same as in the
smectic-H phase, there is clearly no need to in-
voke any orientational order around the long axis
to explain the corresponding NQR data. ' This
will be discussed in detail in a forthcoming paper.
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In fact, the EFG has both intramolecular and inter-
molecular origins. In a solid, the latter is usually
found to contribute no more than 8 to 4~/& change in the
quadrupole coupling constants [A. Coker, T. Lee, and
T. P. Das, J. Chem. Phys. 66, 8908 (1977)j. The ac-
curacy on ~eqo~ is thus expected to be of this magnitude
while that on qo may be (much) poorer. These quanti-
ties can thus be also considered, to a certain extent,
as parameters. For our present purpose, however,
this is not necessary.
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An exact relation is established between the solid-on-solid model describing the growth
of crystals and the classical ~ model. Application of this relation to a special case
leads to an exact correspondence between the Xy model and the Coulomb gas which
matches with the relation obtained by Kosterlitz in the strong-coupling limit.

Recently there has been a growing interest in
the existence and nature of a roughening transi-
tion which might describe the sudden loss of a
sharp interface in Monte Carlo simulations" of
crystal growth. The interface in these simula-
tions is described by the so-called solid-on-sol-
id (SOS) model in which the possibility of "over
hangs" above the interface are ruled out so that
the interface is conveniently described in terms

of integers h,. denoting the number of adatoms at
the jth lattice position of the interface. The in-
teraction, which will be assumed here to be of
nearest-neighbor type, is expressed in terms of
height differences of adjacent columns as

H= Q V(h(-h, .).

Originally' the possibility of a roughening
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transition was argued on the basis of a compari-
son with the two-dimensional Ising model, but
recently it was shown by Chui and Weeks' that in
the special case of the discrete Gaussian (DG)
model, where the function V is quadratic, an ex-
act mapping could be made onto the Coulomb gas.
The nature of the transition in the latter model
is believed to be rather different from that of the
Ising model. Renormalization-group calculations
by Kosterlitz' suggest a specific heat which is not
analytic but infinitely differentiable at T, (infinite-
order transition) while the susceptibility remains
infinite for all T& T,. A second indication that
the roughening transition of the SOS model is not
the Ising type came from the work of van Beyer-
en. ' He showed that the so-called BCSOS (body-
centered SOS) model, which can be seen as a next-
nearest-neighbor version of (I) with a V that al-
lows only unit height differences, can be trans-
lated into the ice model. The exact solution of
the latter model shows again a specific heat with
an infinite-order singularity.

In the present Letter I want to show that the
general SOS model can be mapped into a third
model with an expected infinite-order singularity,
namely the two-dimensional XY model. ' The ex-
istence of such a relation is not completely unex-~

pected since Kosterlitz and Thouless' pointed out
that the vortex configurations in the XY model in-
teract as charged particles in a Coulomb gas
which in its turn is connected with the DG version
of the SOS model as mentioned above. The pres-
ent result is new because it applies to a general
V and because it yields, upon restriction to a
quadratic V, a precise mathematical relation be-
tween the XY model and the Coulomb gas which
can be compared with the physical identification
of Kosterlitz and Thouless.

Consider for simplicity the Hamiltonian (I) on
a square lattice of N sites. We associate to each
nearest-neighbor bond a new variable

(2)

where the sign is chosen such that the lattice
point i has a smaller x (or y) coordinate than the
point j. A description of the model in terms of
these variables would increase the number of
degrees of freedom by a factor of 2 so that one
should take into account N constraints which can
be expressed by demanding that for every ele-
mentary square

&k~)+ & ~a) &hr )

where the sites i, j, k, and l are the corners of
the square. This constraint can be written as

«] 2'
(2v) dp, , e~ p, , ( «,.&+ &;»- &„& &„&)=—„&...+„&,, & „&,»+„&,

where the angle y&, may be associated to the centers of squares (numbered by j') thereby forming
again a square" lattice. The partition function Z(V) of the SOS model defined as

Z(V)= P exp[- P V(h, -h, )] (6)
hl~ '. ..hg «, y)

may be evaluated by summing over the new variables n«» taking into account for every square j' a con-
straint of the form (4). Interchange of the sum over n«» and the integration over cp&, leads to decoup-
led sums over the n«&) with the result

Z(V) = (27&) "J dy, ~ J d«&„exp(- Q V(y, , —y~, )l
0

& ~l

in which the function V has a period 2m and is defined by

(6)

V(q) = —1n(g„exp[in@—V(n)]) .
Formula (6) expresses the partition function of the SOS model as a partition function of a generalized
XI' model where next to the usual interaction term J cos(jo, , —9&, , ) also appear higher harmonics.
These higher harmonics are absent if one considers a speci. al SOS model with V given by

V(n) = —ln (2/m)'~'f e~'"~c o(syn)dy =- ln (2m)'~1„(J),

where I„is the Bessel function of imaginary argument.
A SOS model which is often considered in the Monte Carlo simulations is the model where the func-
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tion Vis given by

V(n) = Jinni,

the interaction of the corresponding XY model is easily calculated to be

2e ~
)c(y) =-)n(tsnhJ)+)n)~l-, z cosy)"2J'

(9)

(10)

A general feature of the transformation, which is directly apparent from this formula, is that strong
couplings are mapped into weak couplings and vice versa.

One can use the result of Chui and Weeks' to establish a precise relation between the XY model and

the Coulomb gas defined by a Hamiltonian

II=- JCoulf QP, P, In(ii —ji)+(—,'Ins+y)glP, 'j,

where p,. denotes the charge located at lattice
site i and y is Euler's constant. Chui and Weeks
show that the partition function of the discrete
Gaussian SOS model with V given by

V(n) =J n' (12)

is directly related to the partition function of a
Coulomb gas defined by (11)with

Jcoul uvIJDG '

Notice that in this transformation again strong
couplings are mapped into weak couplings.

The DG model (12) can in its turn be related,
via the present result, to an XY model with an
interaction

V(y) = —in+„exp(in' —JDGn')

=-lne [uP exp(-JDG)], (14)

where 8, is the Jacobi (9 function. It is, there-
fore, this special XY model which is exactly re-
lated to the Coulomb gas when we put JD

= —,'l) I
J~,„,." In order to compare this relation with
that of Kosterlitz and Thouless' we consider the
strong-coupling limit for the XY model (i.e., JDG- 0) in which limit their result is expected to ap-
ply.
In that limit it is a good approximation to consid-
er only the second-order term in the expansion
of V(y) yielding

Jxr u 1IJDG ~ JCoul (17)

which corresponds exactly" with the result of
Kosterlitz and Thouless. The estimate of the
critical temperature of the XY model given by
Kosterlitz' leads to the value JDG '~1.48 for the
roughening temperature of the DG model. This
value compares favorably with the value JDG '
—1.3+ 0.1 found in Monte Carlo simulations' of
the DG model.

An important correlation function in the study
of the roughening transition is

which describes the average interface width be-
tween sites which are a distance i ji apart. If
one passes to the Fourier transform of the inter-
face profile, the methods used above to transform
the partition function are directly applicable and
one finds

g(i ) =[(d'Id'~)P(8; j)] (19)

where the function K(J} is given asymptotically by

f~(JDG) 2JDG + ~ ~ ~ ~

Comparison with the same expansion for the usu-
al XY model leads in the strong-coupling limit to
the relation

v(q) = --,'z(J„)y', (15)
The function P(6; j) is defined by

1p(~;j) =
Z(& (jt, jt&Eg

V(y,'s y,'s+ 6) ]-, (20)

in which L denotes the set of bonds (on the dual XY lattice) which are crossed by a path 8 on the origi-
nal lattice connecting the points 0 and j, and I- is the complement of I-. This form of representing the
correlation function@(j) in terms of averages in the XY model has the advantage that it brings out
clearly the independence on the choice of the path S, since the set I. can be moved to the set L, ' corre-
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sponding to another path S ' by a shift over 0 of
all angles located between S and S'. Otherwise
it is unfortunately a rather complicated expres-
sion. In order to get some insight into its struc-
ture, one may expand the function V again to sec-
ond order which leads to

g(j)=&[K(ve) - ~xr] &xr
igS

(21)

where (vy) denotes the component of the gradi-
ent Vy orthogonal to the path S,

Following Kosterlitz' one can separate the fluc-
tuations in cp(r) into a piece y(r) arising from
vortex contributions (n) and into a piece g(r) con-
nected to the usual spin waves (s). The expres-
sion (21) takes then the form

Q(vP), = Q(vP');" = 0'(2) —0'(0), (23)
ics ieS

and consequently

r.(j)=&[0'(j) —0'(0)]') . (24)

Since it is precisely the fields y'(r) which lead
to the Coulomb-gas formulation of the XY model
in the analysis of Ref. 6 one can, using Eq. (2.7)
of that reference, directly relate this average to
the potential of mean force. The same result

+&[ Q(vV), ]')„-=r,(j)+ r„(2). (22)
ics

The vortex term 1"„(j)can be reduced to a more
usual form if one passes to the conjugate function
y'(r) which is connected with y(r) through the
Cauchy-Riemann relations (compare Ref. 6).
Since these relations imply Vcp& Vy', one has

was obtained by Chui and Weeks' in the case of
DG model for the full correlation function g( j).
The divergence of g(j) as in~ j~ (above the rough-
ening temperature) following from this identifica-
tion is recently confirmed by the Monte Carlo
simulations of Swendsen. '

It is a pleasure to thank H. van Beijeren and
C. Fortuin for valuable discussions.

Note added. —After completion of this work we
received a preprint by Jorge V. Josd', Leo P.
Kadanoff, Scott K. Kirkpatrick, and David R. Nel-
son where similar results were obtained in a dif-
ferent context.
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