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FIG. 3. Eigenfunctions showing the poloidal velocity
for the »=1 and »= 3 modes for case B (g8 = 12%) for
go=1.55, The left- and right-hand diagrams are for
¢ planes separated by an angle n/2n.

about 75% of the plasma “radius.”

In summary, then, we have shown how a wide
range of high-g tokamak equilibria can be calcu-
lated using stardard procedures. The model al-
lows independent variation of g, B, and g,, the
method of increasing g, being similar to the pro-

cess which occurs in experimental tokamaks.
The stability to low-» internal modes has been
calculated for a number of these equilibria and
stability has been demonstrated for an equilibri-
um with g=12%.
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Solution of the X-Ray “Phase Problem”

Ben Post
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(Received 22 July 1977)

A procedure is described for the experimental determination of phase relationships
among x-ray reflections from single crystals. It is shown that when three or more sets
of planes diffract simultaneously, the spatial distribution of reflection intensities be-
comes a sensitive function of the reflection phases. The dynamical theory of diffraction
accounts satisfactorily for the intensity variations and is used to establish phase rela-

tionships directly from the intensity data.

The direct determination of the phases of x-ray
reflections from single-crystal intensity data con-
stitutes one of the oldest and most challenging
problems of x-ray physics. It is of particular in-
terest to crystallographers since its solution
could make possible the determination of the
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crystal structures of all substances from which
suitable single-crystal data can be obtained.

It has been suspected for some time that coher-
ent interactions among diffracted beams, which
take place when several sets of planes diffract
simultaneously, may provide clues to the solution
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FIG. 1. Schematic representation of three-beam
simultaneous diffraction involving rlp’s 0, #, and P.

of the “phase problem.” Lipscomb,! Fankuchen,??
Eckstein,?® Miyake and Kambe,® Hart and Lang,*
and others have investigated the problem from
that point of view, with only limited success.

In general, the phases of individual reflections
vary with choice of the unit cell origin. The
phases of the products of groups of structure fac-
tors, the sums of whose indices equal zero, are
however, invariant to choice of origin, and tZeir
determination has physical significance. Our dis-
cussion is limited to such phase products.

A procedure for generating z-beam simultane-
ous diffraction is illustrated schematically in
Fig. 1. When reciprocal-lattice point (rlp) H is
brought to its diffracting position on the surface
of the Ewald sphere, conventional two-beam dif-
fraction takes place, and diffracted beams are
directed to O and H. When the crystal is rotated
about OH without disturbing the setting of #, ad-
ditional rlp’s are brought to their diffracting posi-
tions and n-beam diffraction (# >2) occurs. Under
such conditions parallel, overlapping, coherent
beams are simultaneously directed to the rlp’s in
diffracting positions. It is evident that simulta-
neous n-beam diffraction can provide the neces-
sary conditions for interference among discrete
coherent beams in simple, controllable form.

Experimental intensitites along two-beam dif-
fraction lines, in the immediate vicinity of three-
beam diffractions, are shown in Figs. 2(a) and
2(b) for triplet phase products of +1, respective-
ly. The techniques used to record the photographs
have been described previously.® The specimen
investigated was a single crystal of aluminum
oxide (corundum). Its structure-factor phases
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FIG. 2. Intensity distributions along two-beam CuKuw,
and Ko, lines near three-beam points in Al,O;, for
(a) negative and (b) positive phase products.

are well known. The indices, phases, and mag-
nitudes of the structure factors involved in the
three-beam interactions are listed in the figure
captions.

The distinctive feature of Fig. 2 is that in (a)
the intensity is essentially symmetric, and in (b)
it is asymmetric about the three-beam point. I
show below that this is a general characteristic
of the intensity distributions for the two opposite-
phase products, provided that all three structure
factors are nonzero. The observed symmetry dif-
ferences are implict in the dynamical theory of
diffraction.® They make available a tool for the
experimental determination of structure-factor
phase products.

The x-ray wave fields in n-beam diffraction
obey Maxwell’s equations for a medium with a
complex, periodic, dielectric constant, under
conditions which satisfy Bragg’s Law.

The amplitudes are solutions of the linear homo-
geneous equations:

D, =(28,)" " 2p @(H—P)-ﬁpm], (1)

where 8, defined by 8, =IK,l/k = 1=Xac/Aery o0
-1, is an unknown to be chosen such that Eq. (1)
has a nontrivial solution. ¢._p, is a coefficient
in the expansion of the electric susceptibility in
a Fourier series. It is proportional to the nega-
tive of the structure factor (= F._p)). _ﬁp[ﬁ] is the
vector component of D, perpendicular to K,. The
summation is over all rlp’s, but is limited, in
practice, to terms for which the §’s are very
small, i.e., to the rlp’s very near their diffract-
ing positions.

For a three-beam case, Eq. (1) yields three
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closely similar pairs of solutions. Without sig-
nificant loss of generality, I will limit discussion
to one member of each such pair. I will discuss
centrosymmetric crystals whose origins are at
symmetry centers. In such crystals, ¢ ,=¢ .,
and the phase angles of the structure factors are
either 0 or 7. It is readily shown that the conclu-
sions reached for three beams apply, with only
minor modifications, to four-beam and higher-
order cases.

The allowed values of §, are the solutions of
the secular determinant of Eq. (1). They are
strongly phase dependent, as can be seen from
an examination of the expansion of the determi-
nant at the exact three-beam point:

@o—280)° = (@2 +@p2+ @y py (@ o= 28)
+2¢uP pP y-p =0. (2)

Equation (2) has three unequal real roots sum-
ming to zero. The distribution of the signs of the
roots is determined by the sign of the last term,
i.e., by the sign of the invariant phase of the
structure-factor triplet. The two possible distri-
butions of the roots (- ++or — —+) lead to prop-
agating modes which differ significantly with re-
spect to excitation and absorption.

The general solution for the §, near a three-
beam point is usually represented by surfaces in
reciprocal space defining the wave-vector sets
(T{O, T(H, K;), one for each mode (Fig. 3). The
collection of surfaces representing all the modes
is referred to as the “dispersion surface.” A cal-
culated section through the dispersion surface,
parallel to a two-beam line passing through a
three-beam point near the center, is shown in
Fig. 3, for both signs of the triplet phase. The
points La (Laue) and Lo (Lorentz) are the three-
beam diffraction points for reciprocal distances
of 1/Ay,c and 1/A .y, (nondiffracting) from each
of the three rlp’s.

In general, the modes whose surfaces are clos-
est to the Laue point have the lowest absorption
coefficients and are responsible for most of the
transmitted intensities.” The corresponding
modes in Fig. 3 are 1,2 on the left-hand side and
3,4 on the right-hand side. Note that when the |
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FIG. 3. Section through dispersion surface near
three-beam point, Calculated for positive and negative
phase products.

triplet phase is positive (dashed lines), the curves
corresponding to those modes are approximately
symmetrical about the three-beam region (near
the center). For negative phase, however, the
curves (solid lines) show a large discontinuity
just to the right of the three-beam region, and

the 3,4 curve on the right-hand side reaches posi-
tions equivalent to those of 1,2 on the left-hand
side only at large angular distances from the cen-
ter.

The calculated effects of the above on the exci-
tation of modes of propagation are shown in Fig.
4. The effects on the absorption coefficients are
very similar. Polarizations of the diffracted
beams have been taken into account in these cal-
culations. To reduce confusion I show the two-
mode averages for only two pairs of modes (1,2
and 3,4) in the figures. For the positive-phase
product the excitations (and the absorption coef-
ficients) undergo only minor changes in passing
through the three-beam regions. The correspond-
ing changes are much greater for the negative-
phase product.

The intensity of a diffracted beam is given by

I, ={>,.[D, (m)exp2miK, ' (m) T |(exp - 27K " « T)}2, (3)

i.e., by t_l)e prodl_x.ct of terms representing excitation and absorption. The summation is over the m
modes. K,’ and K,” are the real and imaginary parts of the propagation vector K. |47K”"|, equals
u,, the linear absorption coefficient of mode m. It is evident from Eq. (3) and Fig. 4, that positive and

762



VOLUME 39, NUMBER 12

PHYSICAL REVIEW LETTERS

19 SEPTEMBER 1977

»H
(o]
Q

34 POSITIVE ]

PHASE

- NEGATIVE

<3
o

ABSO'\F:PTION COEFFICIENTS (CM'I)
3]
(o]

11 |
8 12 -l2-8-4
A ¢ (SECONDS)

1 1 1 1
0 4 8 1216

FIG. 4. Relative excitations of modes of propagation.
Calculated for negative and positive phase products,

negative structure-factor phase triplets should
yield different spatial distributions of diffracted
intensity in n-beam diffraction. I have observed
such phase effects repeatedly in perfect crystals
of germanium and ammonium dihydrogen phos-
phate as well as in the relatively imperfect crys-
tal of aluminum oxide discussed above. Analysis
of Eq. (2) shows that the effects of a change of the
phase product on the diffraction process are max-
imized when all three structure factors are equal

to one another, and vanish if one of the structure
factors equals zero. The phase effects should
therefore be detected as readily when all three
structure factors are “weak,” as when all are
“strong.” The extent to which these effects can
be detected in imperfect crystals, such as are
usually used for crystal-structure analysis, or
in noncentrosymmetric crystals remains to be
determined.

The author acknowledges with thanks many
stimulating and helpful discussions of the problem
with Professor H. J. Juretschke. This work was
supported by the National Science Foundation and
in part by the Joint Services Electronics Program.
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Orientational Order in Biaxial Liquid Crystals: The Smectic-VI and -H Phases
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The UN nuclear-quadrupole resonance (NQR) data of Seliger et al. on the smectic-VI and
-H phases of terephtal-bis-butylaniline are reanalyzed and compared to neutron results.
For the smectic-VI phase, both methods lead to remarkably consistent conclusions, but
do not differentiate between possible models, For the H phase, the NQR results are con-
sistent both with a model permitting weak orientational order around the long axis and
with a model permitting uniform rotation around the long axis plus (anisotropic) fluctua-
tions of this axis. The latter is more realistic since it agrees with the neutron results

while the former does not,

In a recent Letter,' N nuclear-quadrupole res-
onance (NQR) data on terephtal-bis-butylaniline
(TBBA) have been presented and analyzed in
terms of rotational models for the molecular mo-

tions. Concerning the smectic-H phase, it is con-
cluded that the results may be interpreted within
the Meyer-McMillan theory® which predicts the
existence of a polar orientational ordering around
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FIG. 2. Intensity distributions along two-beam CuKuy,
and Ko, lines near three-beam points in Al,O,, for

(a) negative and (b) positive phase products.



