
VOLUME 39, NUMBER 12 PHYSICAL REVIEW I.ETTERS 19 SEPTEMBER 1977

Nonlinear Saturation of the Dissipative Trapped-Electron Instability

Liu Chen, R. L. Berger, J. G. Lominadze, '" M. N. Rosenbluth, and P. H. Rutherford
Plasma Physics Laboratory, Princeton University, Princeton, Nezo Jersey 08540

(Received 22 March 1977)

It is shown that trapped-electron-induced scattering can be dominant over nonlinear
ion Landau damping in the saturation of short-wavelength, dispersive, trapped-electron
instabilities in tokamaks. Trapped-electron —induced scattering transfers the wave en-
ergy to shorter wavelengths, where it can be dissipated by ion viscosity.

Dissipative trapped-electron instabilities are
important in both current and future generations
of tokamaks. ' Although the linear theory of these
modes has been studied in considerable detail,
most treatments of the nonlinear evolution and
saturation of the instabilities, and the associated
anomalous transport, have been based on rather
primitive models, such as (i) an ad koc relation
y-k~'D to estimate the anomalous diffusion co-
efficient'; (ii) a free-energy argument to esti-
mate the saturation level'; or (iii) a one-dimen-
sional resonant mode-coupling process. ' Ap-
proaches (i) and (ii) give upper bounds for the
transport coefficients and are, presumably, to
be employed only when there are no other mecha-
nisms that give lower saturation levels. Ap-
proach (iii) is unsatisfactory for two reasons:
First, the nonlinearities due to E xB convection
are intrinsically two-dimensional; and, second,
most of the unstable spectrum lies at short wave-
lengths" [k~'p('(1+ T,/T, ) -1], where strong dis-
persion renders resonant mode coupling ineffec-
tive.

In this Letter, we present a new formulation
of the nonlinear theory, which includes both two-
dimensional nonlinearities and nonresonant mode-
coupling interactions. We find that there are two
effective, but competing, nonlinear mechanisms,
namely trapped-electron-induced scattering and
nonlinear ion Landau damping. ' For typical toka-
mak parameters, our analysis demonstrates that
trapped-electron-induced scattering can domi-
nate over nonlinear ion Landau damping and, in
this case, the instabilities are saturated by the
spectral transfer of unstable wave energy to the
shorter-wavelength (stable) regime, where dis-
sipation due to ion viscosity would occur.

To simplify the analysis, we consider a plane
slab geometry, taking B in the z direction, and
making the usual local WEB approximation for
the perturbation fields. Thus, the effects of mag-
netic shear, toroidal geometry, and radial eigen-
mode structure are neglected. Although we ig-

nore the destabilizing effect of electron VB-drift
resonances, ' our general formulation could easily
be extended to include these terms.

The electron dynamics may be described by the
drift-kinetic equation with an energy-dependent,
number-conserving, Krook model to treat the
collisional detrapping processes. Assuming ar

-v,&&«e' 'vr, /qR, where qis the safety factor,
e =~/R, and vr, = (2T,/m, )' ', we may average
over the "bounce" motion of the trapped electrons.
We obtain a trapped-electron perturbation given
by

f, '(k) = 4 (k)f, '" +k, (k), 4(k) = eq&(k)/T, , (1)

and, in linear order, we have

k (&& (k) k +k
@ (k) &0&

(e&, +iv, (v)
(2)

(4)

where 7 = T,/T„p =v, /Q„Q( =eB/m(c, sin9k
=v, /v~, and sinu& ——k, /k~. From the (luasineu-
trality condition n, '+n, " —n,. =0, we obtain the

Here, v, (v) =v, f&/v, v =v/vr„(u„&, -—
(u~&, [l

—q, (-,
' —v )], q, =dlnT, /d inn, ~~„-=k,cT, /eBy„,

and r„'= Id inn/dxI. In the case being consid-
ered, resonant electron effects involving un-
trapped electrons are smaller than the trapped-
electron dissipative effects, ' so that the untrapped-
electron perturbation f, "(k) is given simply by

f, "(k) = 4'(k)f, '". For the ions, trapping effects
are negligible, assuming (e» e'~'v r(/qR, where
vr( = (2T(/m()'~'. The ion dynamics may be de-
scribed by the drift-kinetic equation generalized
to the case 0 p, - l. We obtain an ion perturba-
tion given by

f, (k) = —74 (k)f, & '

+ k, (k) exp[ik, p sin(g-„- o.-„)]

and, in linear order, we have
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dispersion relation

h(k) —= I+a+(V+(awk/(u„))kZ((k)F(bk)- (2e)' (((uk —(ugk )/[&uk+iv, (V)])=0.
Here, the term in angular brackets denotes an average over a Maxwellian distribution, F(bk) =I,(bk)
xexp(- bk), &&&k = —,'k 'p, ', p,. =vr, /Q, , $k =uk/lk„lv~„and Z is the plasma-dispersion function. In the
limit (-k& 1, we obtain

(e„=(u ~-„F(b-„)/H(b-„),
P T

Yk (2E)1/2 I k +k
6 I 6~V [~(y )]- &, ( I)

Here, H(bk) =1 +7 —~F(b-k), and 5-k~ =(z/2)' '(r+&uwk/~k)F(bk)$-k exp(- (k'), a term describing the ion
Landau damping. We have also introduced an ion viscous damping 6T, ; for ~k» v«, this is given by'
6k~ ——7v(1+ (u*k/ur„7)bk'v, ,/10~k for bk & 1, and 5k~ =3(7&+1)~(1+~ok/(uk7)bk' 'v„/87&' 'ur„. for b„& 1.
this treatment of the ions, we have neglected ion temperature gradients. For e- —,', g, -1, and v -1 —2,
the maximum growth rate arising from the trapped-electron term is typically"' such that yz/~ -10 '.
Moreover, the modes with large growth rates form a fairly broad spectrum centered around ~by -1
and, for typical parameters of present and future tokamaks, have cog + v ff.

We now consider the nonlinear evolution of the instability. Since the unstable modes are short-wave-
length dispersive waves, for which the relevant mode-coupling processes are nonresonant, we must
retain terms up to third order in the perturbations. However, y~/ur„and p&/z„may both be treated as
small parameters. The nonlinearities arise primarily from nonlinear E XB convection terms in the
drift-kinetic equations. We may write the quantities I&, , appearing in Eqs. (1) and (3) as perturbation
expansions h, , =h, ,

'" +8, ,
'" +A, , '". In second order we have a set of viytual modes, with wave vec-

tor q=k-k' and frequencies coq =~k —&uk, , where k and k' denote wave vectors of the linear normal
modes. The perturbed distribution functions for these virtual modes are given, in terms of the sec-
ond-order virtual-mode potential C (q), by expressions formally identical with those of Eqs. (1)-(4),
together with explicitly nonlinear terms:

(9)

h ' '( ) = ' ' " — "' kxk' e, 4*(k')4 (k)J (k 'p)J (k p)f ~ ' (8)
q ~1I ll k k '

h '"( )= ' ' ~ — " kxk' C*(k')C(k)f "&
(dq +iV (5) (dg (dk i

where p, =v, /Q, . with v, = (T,/m, )'~'. In the ion term given in Eq. (8), we have assumed 1ukl» lk»v&, 1
and

l k &~
v

&& 1
In the electron term given in Eq. (9), noting that

l vi ), l
&uk,

l
&&

vlf�&'

y
we have assumed

that &uk, ek, & v, (v). Also, noting that the nonlinear interactions take place for laql = 1~k —(ug 1« ~k, ~k
we have kept &u, compared with q»v~~ and», (v). It is a straightforward matter to integrate Eqs. (8) and
(9) over velocities, and to substitute into the quasineutrality condition, to obtain the second-order vir-
tual-mode potential 4(q). In doing so, we again make use of the fact that the nonlinear interactions
take place for l&uql«&uk, &ug and, accordingly, we set ~k =~g, , in the factors in parentheses on the
right in Eqs. (8) and (9). We obtain

$(q)@(q)=- (iQ p/~k). kxk' e, 4*(k')C(k)[F,(k, k')X, (q)+y, (q)],

where E,(k, k') = (Z, (k p)g, (p 'p)J, (q p)), h(q) = F(b-„)y, (q)+y. ,(q), »d

COq

The remainder of the calculation is fairly straightforward and follows standard procedures. ' We
have third-order perturbations

~ 2

g, &'&(k) = ' ' g kxk' e (C (k'p, (k, 'p)[A, '"(q) k+, '"(q)]-4( )Jq, ( pq)h, '"(k)},
k ll 11 kg

2

k &'&(k) = '. ' pkxk' e (4(k')[k, '"(q)+h, '"(q)]-4(q)I&,'"(k')},

(10)

(12)
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where, as before, q =k —k' denotes the wave vector of the second-order virtual mode. Using the quasi-
neutrality condition to third order, and the random-phase approximation, we obtain the wave kinetic
equation

1 &Ng
=ygNT, +QP(k, k')NTNT, .

k'

(14)

Here, we have introduced the number of drift-wave plasmons, given by N-„= [sb(k)/s&uT]! C (k)!', where
sS(k)/sar„=if(bT)/&uq. The coupling coefficients are given by

(k k.)
"~l 'bT T i '(™i—o'T, ) F(k k, )I X((q)X. '(q)

G(k k,)I X, (q)'
(15II (bT, )H (b-„,) &(q)

+ ™$(q)

where

F(k, k')=I"(b-„) —2(J (k p)J (k 'p)J' (q„p))+(J '(k p)J, '(k 'p)), (16)

G(k, k') = I'(b&)(Jo (k~p)JO (k~'p)) —(Jo(kj p)JO(k~ 'p)J (q p))2 (I'I)

It should be noted that, although the quantities ImX, '(k) and ImX, '(k') are of order y„/~ and y„,/~„
the quantity ImX, '(q) can be of order unity, since the wave vector q corresponds to a virtual mode,
rather than a normal mode. More specifically, due to the energy dependence of the collision frequency,
v, (v) =v,&f/v, only low-energy (v& 1) electrons contribute to the integrals in ImX, '(k) and imX, '(k'),
whereas with!&u-! «!~!,!&eg,!, electrons up to high energies (v»1) (i.e., almost the entire population
of electrons) contribute to the integral in Imx, '(q). Thus, we have !Imx,'(k)!, !Imx, '(k')! « Imx, '(q)!,
and the weak turbulence expansion is valid. As functions of sr~, the functions ImX, '(q) and ImX, '(q) are
sharply peaked around uq =0. For!&o„!,!~z!& v«&, !k~~v, !, !k~~'v, ! we can approximate the quantities in
Eq. (15) by 5 functions:

Im[ X(q) ,X'(q)/h(q)]= m(5~ -—ar„, )(&u -„—&u„T,, )(2e)' '/[1 (b-) —(2e)'~'],

1m[X, (q)'/h (q)] = m5 (ur„. —a)-„,)(&ugT, —(og-„,)/[I'(b-) —(2e)'~'] .
(18)

(»)
Equations (18) and (19) have been derived by us-
ing the appropriate asymptotic forms of the func-
tions X,'(q), X, (q), and h(q).

In Eq. (15), the term in G(k, k') corresponds to
ion-induced scattering' (nonlinear ion Landau
damping); the term in F(k, k') is a new term, and
corresponds to trapped-electron-induced scatter-
ing. Since P(k, k') = —P(k', k), the total number of
plasmons is conserved in both scattering proc-
esses. Both scattering processes are intrinsical-
ly two dimensional. If the wave-vectors k and k'
are in the same direction, then sin(aT, —n-„,) =0,
with the result that P(k, k') =0. We note also that
F(k, k')» 0 and G(k, k') & 0. We see that the ion-
induced scattering contributes positively to P(k,
k') if k„& k '; i.e., wave energy is transferred
from short wavelengths to long wavelengths. On

the other hand, the trapped-electron-induced
scattering contributes negatively to P(k, k') if k,
& k, '; i.e., wave energy is transferred from long
wavelengths to short wavelengths. The relative
importance of these two competing processes de-
pends on the relative magnitude of F(k, k') and

G(k, k'). While the expressions are generally
complicated, we can analyze them in two limits.

! In the limit bT„bg, , b~&1, we can show that

F(k, k') = 2b-„bg cos'(a-„—n T,,) and G (k, k') = b-„b-„,

xcos'(o, „—n-„,). In the opposite limit b-„, b~, , b-„

& 1, we find G(k, k') ~ I'(b„)I'(bq)1'(~q )&F(k, k')
= I'(b-„). Thus, trapped-electron-induced scat-
tering dominates in both limits whenever c& —,',
and we expect that for typical e values (e.g., e
=-,') trapped-electron-induced scattering always
dominates over nonlinear ion Landau damping.
Whenever trapped-electron-induced scattering
dominates, the virtual mode must have negative
dissipation. On the other hand, our approxima-
tion is only valid if I'-„& (2e)'~'; otherwise, the
virtual mode could resonate with an unstable nor-
mal mode at very low frequency. '

Certain general conclusions can be drawn from
Eq. (15). To simplify this discussion, we may
restrict ourselves to the case ~» 1 and b~«1,
such that ~bT, - 1. In this limit, the small-b ex-
pansions of F(k, k') and G(k, k'), given above, are
valldi moreover rq =1$ so that the denominators
in Eqs. (18) and (19) remain positive. The dis-
persion relation is &uz

-—&u*T/(1+ Tb-„) and the
modes with largest frequencies, and largest
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growth rates, "have vb~= 1. With trapped-elec-
tron-induced scattering dominating over nonlin-
ear ion Landau damping, the unstable wave ener-
gy is nonlinearly transferred to modes with high-
er k, values, i.e., to shorter-wavelength modes.
Since there exist stable modes at short wave-
lengths due to ion viscous damping, they provide
the necessary energy sink to achieve the satura-
tion.

A rough estimate for the saturation amplitudes
of the unstable modes can be obtained by balanc-
ing the growth rate with trapped-electron-in-
duced scattering, i.e., by setting N-„-y-k/P(k, k').
Assuming e -—,', mba - 1, and &uT,

—~~T/2, we esti-
mate that P(k, k')- (w/20)Q, /v, giving ~n, /no~

(~q&q/2)' '-
(&p,/r„)(yg/~q)' '- 1% typical-

ly. In the quasilinear approximation, we can es-
timate the cross-field particle diffusion coeffi-,
cient as D = ~k„p„/B~'yk/~'-(2v'p, /r„)(yT/
ur„)'D, where D~ = cT,/cB. For modes with simi-
lar wavelengths (i.e., k, p, -k~p, -l) conventional
estimates based on D -y„/k~' would give D - (p, /r„)
(y-„/&uk)D~. Thus, for yg/v„-10 ' (as is typical
of these modes) and ~-2, our new estimate gives
a value for D comparable to the conventional one.
On the other hand, the largest contributions to
y„/k~' arise from somewhat smaller k, values
[typically, ' k, 'p, '-0.2, giving D-0.2(p, / r)D ],
for which resonant three-wave coupling also needs
to be considered.

To obtain the detailed nonlinear dynamics and

the saturated spectrum of modes, a computational
solution of Eq. (14) is needed. Resonant three-
wave coupling can also be included in such a treat-
ment.
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A model allowing the calculation of very high-p tokamak equilibria with choice of p, p&,
and qo is described. One of these equilibria having P = 12% has been shown to be stable
to low- n internal modes.

It has been widely believed that, with the con-
straint q ~1, there is a limit to the achievable P
in tokamaks imposed by equilibrium limitations.
Clarke' has drawn attention to the argument of
Mukhovatov and Shafranov' showing that this is
not the case. Because of the crucial importance
of obtaining a high value of P for an economic fu-
sion reactor, it is now essential to understand
the stability properties of high-p configurations.
We have used a method of calculating high-p equi-
libria with a chosen value of q on axis (q, ) which

is reminiscent of the observed behavior of toka-
maks and which leads to stable configurations
with higher values of p. Stability against low-n
internal modes, including the effects of balloon-
ing, is obtained for p= 12%% (where p= 2 Jpd7/
I B'd7).

This value of p represents a considerable im-
provement over the average P of 3% obtained in
our previous calculation using a simple equilibri-
um. ' Since the completion of the calculations de-
scribed here, two other papers dealing with the


