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This is in qualitative accord with the electron
screening mechanism since electrical resistivity"
increases rapidly as T decreases and, for x=3,
has already reached relatively high values (10'-
10' 0 cm) at 150 K whereas for x =O.l the resis-
tivity at 150'K is only -10 ' 0 cm and does not
reach values 10'-10' 0 cm until T ( 20'K.

In conclusion we have observed an unusual tem-
perature dependence of QS in 1T-Fe,.,Ta, ,S,
which can be understood in'terms of a tempera-
ture-modulated contribution from a local lattice
distortion. The distinctive temperature modula-
tion of this distortion is producee by a strictive
interaction with the continuous LS-HS magnetic
transition of Fe' in this material and allows us
for the first time to observe a magnetic modula-
tion of a lattice EFG. The onset of CDW instabil-.
ity is also clearly observable in the QS data.

We thank M. Robbins for reducing "Fe,03 to
"Fe metal, J. V. Waszczak for providing the
crystals of "Fe-doped TaS„and W. F. Brinkman
for helpful discussions.
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Computer modeling techniques are used to obtain information about the spin dynamics
of model spin-glass Hamiltonians in the zero-temperature limit. The density of states
and dynamic structure factor are computed numerically for the Edwards-Anderson and
Mattis models with Heisenberg interactions. We find no evidence for spin-wave modes
in the former; the latter shows spin-wave behavior characteristic of a disordered ~
model.

The nature of the low-lying excitations in spin-
glass alloys is a question of considerable impor-
tance in the interpretation of thermodynamic da-
ta. In this Letter we report the results of a nu-
merical analysis of the zero-temperature dynam-
ic response of two models whi. ch have certain
thermal and magnetic properties that are be-
lieved to be characteristic of spin-glasses. We
calculate the density of states and the dynamic
structure factor for the classical Edwards-An-
derson (E-A)' and Mattis' models with Heisen-
berg interactions between nearest neighbors.
The dynamic response of the Mattis model in the
zero-temperature limit is found to be qualitative-
ly similar to that of the XY model, which in three
dimensions is described by linear spin-wave the-

ory. In contrast, we find no evidence of spin
waves in the E-A model.

In its simplest form the E-A model consists of
a Heisenberg Hamiltonian

with a Gaussian distribution for the exchange inte-
grals J„.. We specialize to nearest-neighbor in-
teractions between classical spins of unit magni-
tude on a simple cubic lattice. The distribution
of the J„,has a mean value of zero and a root-
mean-square width AJ. In our determination of
the density of states we follow a procedure simi-
lar to that of Walker and Walstedt in their numer-
ical analysis of a spin-glass alloy with a Ruder-
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FIG. 1. Density of states for the E-A model. Histo-
gram is the average over twelve configurations for a
4 x 4 x 4 array. Inset shows the localization indices
(ref. 3) for one configuration. The arrow denotes the
value '4, the index of a delocalized state with equal
amplitude on all sites. The broken curve is the den-
sity of states obtained by equation-of-motion methods
for a single configuration of a 10 x 10 x 10 array,
normalized to the same area as the histogram.
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man-Kittel-Kasuya- Yosida (RKKY) interaction. '
For a given set of exchange integrals we caclulate
the equilibrium configuration of spins by minimiz-
ing the energy. The normal modes are deter-
mined by linearizing the equations of motion for
the spins, treating the deviations from the equi-
librium orientation as small parameters. Assum-
ing a harmonic time dependence we obtain a dy-
namical matrix whose eigenvalues are the ener-
gies of the normal modes. Our results for the
normalized density of states of 4 &4 ~4 arrays
with periodic boundary conditions are shown in
Fig. 1, where we have plotted the values obtained
by averaging over twelve configurations of the
J„.. Following Ref. 3 we can use the eigenvectors
of the dynamical matrix to calculate the localiza-
tion indices of the various modes, which are plot-
ted in the inset. A comparison of Fig. 1 with the
corresponding data in Ref. 3 indicates that the
densities of states are qualitatively similar. How-
ever the localization indices of the E-A model
are much less energy dependent than the indices
of the RKKY model where only the low-energy
modes are significantly delocalized. We have al-
so calculated the zero-temperature susceptibility
with the result g(0) = (0.45+ 0.03)/&t which is in
agreement with the zero-temperature extrapola-
tion of our Monte Carlo data reported earlier, '
K(0) = (0.45+ 0.05)/6J.

FIG. 2. Dynamic structure factor, $(k, g), for the
E-A model, single configuration, 10 x 10 x 10 array:
(a) k= (x/10)(1, 1,1); (b) k= (2z/5)(1, 1, 1); (c) k
= 7I-(1, 1,1). All curves are normalized to the same
area. Inset shows S(k,R)/E for 2= (x/10)(l, 1, 1).

An important question is whether any of the low-
frequency modes can be identified as spin waves
which we define as delocalized modes character-
ized by a dispersion relation E, =f(k), k being
the wave vector. ' ' In order to study this aspect
of the problem we have used equation-of-motion
techniques similar to those developed by Alben
and Thorpe' to calculate the dynamic structure
factor S(k,E) =3[S„„(k,E) +S»(k, E) +S„(k,E)] for
10 && 10&10 a,rrays. This was done by projecting
S(k) =g; exp(ik ~ r;)S; onto the local spin devia-
tions and then determining the dynamic correla, -
tion functions by expressing (S (k, t)S„(-k, 0)) as
a linear combination of the Green's functions as-
sociated with the local variables. The differen-
tial equations for the Green's functions were in-
tegrated forward in time out to t =20/4J with an
exponential damping factor, exp(- 0.15t/b J).

Our data for k =& (1,1,1), (2m/5) (1,1,1), and
(w/10)(1, 1,1) are shown in Fig. 2. It is evident
that as k decreases the intensity builds up at low-
er frequencies, a. result consistent with the fact
that S(k =0) is a constant of the motion. From
Fig. 2 it would appear the the peak in S(k,E) for
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k = (v/10)(1, 1,1) is in fact the spin-wave mode
mentioned earlier. We do not believe that this is
the case. The equation-of-motion formalism con-
strains S(k,E =0) to be zero. ' The rapid decrease
in S(k,E) below 0.5&J is consistent with this con-
straint and the finite interval of integration. This
interpretation is supported by a plot of the func-
tion S(k,E)/E shown in the inset which decreases
monotonically with increasing E. We have also
used equation-of-motion techniques to calculate
the density of states. Our results are shown as
the dashed curve in Fig. 1, which is in good
agreement with the histogram. Unfortunately be-
cause of the finite size of the arrays and the fi-
nite interval of integration we were not able to
determine if the density of states remains finite
in the zero temperature limit. Thus we cannot
rule out the existence of long-wavelength (k«&/
10) spin-wave modes with energies «&J which
give rise to an E' dependence in the density of

states at very low energies. However if such
modes exist they do not dominate the l.ine shape.
We have used numerical techniques to calculate
(E„') and (E»»'), the second and fourth moments
of the normalized line- shape function. As k - 0
we find that (E„')»(E„')' rather than (E„')= (E'„')',
which would be the case if the line shape consist-
ed only of & functions at energies E =+ (E»,')' '.

The dynamics of the classical E-A model at
zero temperature is appreciably different from
the Mattis model. The latter is characterized by
the Hamiltonian

K =- 2Q J», $» $»R; (2)

where J»; is translationally invariant and the $»

are random variables taking on the values + 1.
As shown by Sherrington, ' Eq. (2) can be expanded
in a Holstein-Primakoff series about the classical
ground state, S» =S$»T, r being a unit vector of
arbitrary direction. The term bilinear in the bo-
son variables takes the form

& = (Q;J»)SQa» a, —SQ J;,(a; a, (1 + $» $&)/2 - 2 (a; ta,.t +a,a, ) (1 —$» (,.)/2),

where the a; and a; ~ are Bose operators with the
standard commutation relations. Our interest
here is in the special case where the mean value
of the $» is zero so that there is no overall mag-
netic moment. In this limit (3) is equivalent to
the magnon Hamiltonian of a disordered XY mod-
el, the ordered counterpart consisting of the
terms without the factor (»$;."

In order to determine the effects of disorder on
the dynamical properties we have made use of
equation-of-motion techniques to calculate the
density of states and dynamic structure factor
for 12 &&12&&12 arrays with nearest-neighbor in-
teractions and periodic boundary conditions. Our
results for the density of states are shown in Fig.
3 where for comparison we have plotted the den-
sity of states of the simple-cubic XY model nor-
alized to the same area. The distribution of
modes in the disordered system qualitatively re-
sembles the distribution for the XY model. This
resemblance carries over into the dynamic struc-
ture factor shown in Fig. 4 for k=&(1,1,1), (m/

2)(1,1,1), and (»T/6)(1, 1,1). In each case there
is a peak in the specturm in the vicinity of the
energy of the spin-wave mode in the XY model
which is given by E, =6JS(1—cosk)' ' for k along
[111].It is apparent that there is only a slight
renormalization of the spin-wave velocity at long
wavelengths. However, even at (s/6)(1, 1, 1) the
half-width of the peak is still greater than the
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FIG. 3. Curve a, density of states for the Maths
model, 12 x 12 x 12 array, average over three con-
figurations; curve g, density of states of the simple-
cubic ~y model. Both curves have the same area.

~ "instrumental width, " 0.4JS (full width at half-
maximum), that is introduced by the exponential
cutoff in the integration.

We speculate that the difference in the spin dy-
namics of the two models is a consequence of the
fact that (3) can be regarded as a disordered
spin-wave Hamiltonian' whereas there is no ob-
vious ordered counterpart to the E-A model. An

intriguing question is whether the HKKY model
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Hamiltonian of Ref. 3 resembles either of the
two models considered here. This problem is
under investigation and the results will be re-
por ted elsewhere.

This work was supported by the National Sci-
ence Foundation under the Grant No. DMH-77-
01057. We would like to thank the authors of
Refs. 3 and 7 for providing us with preprints of
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FIG. 4. Dynamic structure factor for the Mattis
model, 12 x12 x 12 array, single configuration; curve
a, R= (7t'/6)(1, 1, 1); curve b, k= (z/2)(l, 1,1); curve c,
k = 71 (1,1,1). All curves are normalized to the same
area. Arrows show the corresponding spin-wave peaks
for the Xy model.
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