Channeling in V₃Si: Atomic Displacements and Electron-Phonon/Defect Interactions

L. R. Testardi, J. M. Poate, W. Weber,^(a) and W. M. Augustyniak Bell Laboratories, Murray Hill, New Jersey 07974

and

J. H. Barrett

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 15 June 1977)

⁴He channeling measurements of minimum yields in single-crystal V_3 Si have been compared with those calculated with the Karlsruhe phonon density of states. Atomic displacements versus temperature and defect level have been so obtained. In situ radiationdamaged crystals show ~ 10⁻¹-Å displacements and significant phonon stiffening. The observations explain the large changes in electrical resistivity in the defect state, and suggest that both thermal and static (defect) displacements diminish the electron-phonon/ defect interactions, and to equivalent degrees.

We report the results of a ⁴He channeling study of the dynamic and static atomic displacements of V in the A-15-structure compound V₃Si. The measured values of the channeling minimum yield χ_{\min} are found to be appreciably smaller than expected from elemental crystals. This probably results from the reduced symmetry about the atomic rows in the V₃Si lattice. Measurements of χ_{\min} further show that ⁴He radiation damage, which causes large reductions in the superconducting T_c , appears to involve static displacements of atoms from lattice sites and not antisite defects alone. The defects also induce considerable phonon stiffening. These effects can be correlated with the large changes in electrical resistivity of damaged V₃Si films, and suggest that both thermal and static (defect) displacements reduce the electron-phonon/defect interactions, and many of the anomalous properties, in qualitatively similar ways.

Channeling and backscattering studies were performed using 1.9-MeV ⁴He particles in the $\langle 100 \rangle$ and $\langle 110 \rangle$ directions for the V atoms in four samples of V₃Si.¹ The samples were plate shaped [two each with (100) and (011) orientations] and cut from a single crystal whose T_c was ~17 K, electrical-resistivity ratio $\rho(300 \text{ K})/\rho(20 \text{ K}) \sim 22$, and which exhibited (from ultrasonic studies) some evidence of the Batterman-Barrett transformation² beginning at 21 K.

Measurements were made from 20 to 300 K for a $\langle 100 \rangle$ direction, and from 20 to 670 K for a $\langle 110 \rangle$ direction. In situ radiation-damage studies were also carried out with use of higher ⁴He beam currents in a random direction. Care was taken to establish that the beam currents used in the chan-

716

neling studies did not cause significant damage in this defect-prone compound.

Figure 1 shows $\chi_{\min}^{expt}(T)$ for the V atoms in the $\langle 100 \rangle$ and $\langle 110 \rangle$ directions of V₃Si. About ten separate determinations of χ_{\min} for each direction were made at 300 K on the four samples, and these values agreed to within ~± 7%, which is approximately the statistical counting error. The temperature dependence was measured once for the $\langle 110 \rangle$ direction and eight times for the $\langle 100 \rangle$ direction.

To have an expression for χ_{\min} , we have generalized the results for elemental materials 4 and obtain

$$\chi_{\min}^{\text{theor}} = (\pi/A) \sum_{i} \nu_{i} C_{i} \tau_{i}^{2} (1 + \zeta_{i}^{-2})^{1/2}, \qquad (1)$$

FIG. 1. Observed minimum yield χ_{min} from channeling and the derived two-dimensional mean-square vanadium displacements τ_V^2 vs temperature for $\langle 100 \rangle$ and $\langle 110 \rangle$ directions in V₃Si. Several representative error bars are indicated. Also shown are χ_{min}^{theor} for $\langle 100 \rangle$ and $\langle 110 \rangle$. The left-hand scale for τ_V^2 is slightly nonlinear and offset to correct for the oxide-layer contribution (Ref. 3).

where A is the area of a surface unit cell, ν_i is the number of rows in the surface cell made up of the *i*th (*i* is either V or Si) constituent, and τ_i^2 is the two-dimensional mean-square displacement of the *i*th constituent perpendicular to the channeling direction. The C_i 's are discussed below. $\tau^2 = u_{11}^2 + u_{22}^2$ (*u*'s are the one-dimensional Debye-Waller displacements), and is composed of static, zero-point, and thermal-vibrational contributions. ζ^{-2} is defined in Ref. 4 and is of order ≤ 0.5 . Equation (1) holds for an axial channeling direction in which all rows are made up of one constituent only. In V₃Si, this condition applies for the $\langle 100 \rangle$ and $\langle 110 \rangle$ directions ($\nu_{\rm V} = 5$ and 6, respectively; $\nu_{\rm Si} = 2$ and 2, respectively). For $\chi_{\rm min}^{\rm theor}$ we have calculated $\tau_{\rm V}^2$ and $\tau_{\rm Si}^2$

from the phonon densities of states $G(\omega)$ at 4 and 300 K, recently determined by Schweiss and coworkers.⁵ In this calculation⁶ we have assumed an isotropic $\tau_{\rm V}^2$ and a decomposition of $G(\omega)$ into $g_{\rm V}(\omega)$ and $g_{\rm Si}(\omega)$ in such a way that for $\omega \rightarrow 0$ the V vibrations dominate (in-phase motion of V and Si) and for $\omega - \omega_{max}$ the Si vibrations dominate (outof-phase motion of V and Si). While the values for $\tau_{\rm Si}^{2}$ depend strongly on the choice of the $G(\omega)$ decomposition, $\tau_{\rm V}^2$ and $\chi_{\rm min}^{\rm theor}$ and rather insensitive to it. When we adjust the decomposition such that $\tau_{Si}^{2}(300 \text{ K})$ agrees with recent x-ray data,⁷ τ_V^2 also agrees very well. Very recent measurements by Staudenmann of τ_V^2 and τ_{Si}^2 at 13 K also agree with our calculations. We note that these x-ray results reasonably justify the assumption of isotropy for $\tau_{\rm V}^2$.

Values of χ_{\min} obtained from Eq. (1) using the calculated τ 's³ are much larger than the experimental values if $C_{\rm V}$ = 3.0 and $C_{\rm Si}$ = 1.7, as suggested for elemental materials.⁴ However, the C's represent enhancement over ergodic behavior caused in large part by focusing effects of the lattice on the ion trajectories.⁸ In V₃Si, the V and Si rows are intermingled and have low symmetry so that the focusing effects are reduced. Hence the C's were varied to obtain the best agreement with experiment. Because $\chi_{\min}^{\text{theor}}$ is relatively insensitive to $C_{\rm Si}$, $C_{\rm Si}/C_{\rm V}$ was kept fixed at 1.7/ 3.0. The best fit was obtained with $C_V = 1.7$ and $C_{\rm Si}$ = 1.0 with results as shown by the theoretical curve in Fig. 1. The fit is, at all temperatures and for both axes, within the experimental uncertainty. If small C values are characteristic of compounds, they should be observable in other cases.

The great susceptibility of A-15 superconductors to radiation damage⁹ was studied by *in situ*

FIG. 2. Observed minimum yield and derived twodimensional τ_V^2 for $\langle 100 \rangle$ in V₃Si with and without damage as a function of temperature. The inset shows $(d/dT)\tau_V^2$ at 300 K.

damage in a random direction at room temperature followed by channeling measurements. From the previous analysis we are now able to obtain values of $\tau_{\rm V}^2$ for the damaged crystal from the channeling data. Figure 2 shows the observed $\chi_{\rm min}$ and the deduced $\tau_{\rm V}^2$ from 20 to 300 K for (100) channeling after damage doses of 0.75, 1.5, and 2.5×10^{17} cm⁻² of 1.9-MeV ⁴He particles. Based on sputtered-film measurements these doses will reduce T_c to ~8, 5, and 2 K (the low T_c -saturation value of Poate *et al.*⁹), respectively (see Fig. 3). We find that for $\langle 100 \rangle$ (and, from limited testing, (110) channeling, these doses significantly increase χ_{\min} . This behavior is not typical for a metal where the induced defects largely anneal out at 300 K, but is more characteristic of a covalently bonded semiconductor for which such defects lead to a metastable guasiamorphous state.¹⁰

Simple antisite disorder, while retaining a perfect lattice, will not produce measurable increases in χ_{\min} . Our results suggest either 1–2% localized regions of complete disorder or small bond distortions for most of the atoms producing displacements, $\tau_{\rm V}$, from the atomic rows. Previous x-ray studies,¹¹ however, have indicated small bond distortions throughout the bulk of the sample. Calculations of the Debye-Waller factor for the observed τ^2 predict an observable decrease (~ 50% for Cu $K\alpha$ and $\theta > 45^{\circ}$) in the intensity of high-angle x-ray diffraction lines in the highly damaged state-a result qualitatively consistent with observation.¹¹ We have recently learned of channeling and radiation-damage experiments carried out at 300 K in V₃Si by Meyer and Seeber¹² who also conclude the existence of the V

FIG. 3. Change in T_c , electrical resistivity ρ , and τ_V^2 as a function of ⁴He dose. Botton panel shows universal decrease of β vs τ^2 . \bigcirc , β_{th} (undamaged); \Box , β_{th} (damaged); \triangle , β_d (20 K); \blacktriangle , β_d (300 K).

displacements.

Figure 2 (inset) shows, in addition, that with increasing damage τ_V^2 has a minimum in the thermal contribution τ_{th}^2 of about $(60 \pm 20)\%$ of the ideal-crystal value when T_c has been reduced to 5 K. Since $\tau_{th}^2 \propto \langle \omega_{phon}^{-2} \rangle T$ (for T greater than $\frac{1}{5}$ of the Debye temperature Θ_D), the decrease of τ_{th}^2 indicates a significant stiffening of the phonons with defects. This observation is consistent with recent sound-velocity¹³ and specific-heat¹⁴ measurements on neutron-damaged V₃Si. Phonon stiffening with increasing temperature has been previously reported.^{2,5}

Figure 3 shows the increase in $\langle 100\rangle \tau_V^2$ with increasing dose for samples damaged at 300 K and analyzed at 20 and at 300 K. Also shown are the increases in electrical resistivities ρ at 20 and 300 K and the decrease in T_c with dose as observed^{15,9} in sputtered films which have properties similar to the bulk crystal. Note that χ_{\min} continually increases with dose beyond the point where T_c and ρ saturate. (The saturation trend in ρ is from a new datum point at high dose.)

Figure 3 further shows that the large increases in ρ with ⁴He dose are in contradiction to Matthiessen's rule.¹⁵ We may analyze this behavior by writing

$$\Delta \rho = \beta_{\rm th} \Delta \tau_{\rm th} + \beta_d \Delta \tau_d = \Delta \rho_{\rm th} + \Delta \rho_d. \tag{2}$$

Here β_{th} represents the electron-phonon coupling [proportional to McMillan's $N(0)J^2$] and β_d is the electron-defect coupling. τ_{th}^2 and τ_d^2 are the thermal and static (defect) mean-square displacements of the V atoms. Equation (2) should be approximately valid for $T \gg \Theta_D/5$ with regard to $\Delta \rho_{th}$, and at all T with regard to $\Delta \rho_d$.

From Figs. 2 and 3, and Eq. (2), we estimate that at low doses $\beta_d(20 \text{ K}) \sim 7 \times 10^3 \mu\Omega \text{ cm/Å}^2$ and $\beta_d(300 \text{ K}) \sim 3.3 \times 10^3 \mu\Omega \text{ cm/Å}^2$. At high doses $(>1.5 \times 10^{17} \text{ cm}^{-2} \text{ }^4\text{He})$ the increase in electrical resistivity with dose tends to saturate¹⁵ while τ_d^2 continues to increase. Thus β_d is considerably reduced for large τ_d^2 .

For undamaged V₃Si we find $\beta_{\rm th}(300 \text{ K}) \sim 5 \times 10^3 \mu\Omega \text{ cm}/\text{\AA}^2$ from the ratio of $\Delta \rho / \Delta T$ (Ref. 15) and $\Delta \tau^2 / \Delta T$ (Fig. 1). However, at 500 K we obtain $\beta \sim 2 \times 10^3 \mu\Omega \text{ cm}/\text{\AA}^2$.

For elemental¹⁶ V ($T_c \approx 5$ K), $\beta_{\rm th} = 2 \times 10^3$ and $\beta_d = 2.5 \times 10^3 \ \mu\Omega \ {\rm cm/\AA^2}$ at 300 K. It can thus be concluded that the large increase in ρ for V₃Si induced by radiation damage results not only from the atypically large τ_a^2 but also from the large electron-defect coupling as well.

Furthermore, the failure of Matthiessen's rule in V₃Si appears to be a consequence of the fact that $\beta_{\rm th}$ (like β_d) is reduced with increasing τ^2 . For example, samples damaged with 10^{17} cm⁻² ⁴He ($T_c \sim 6$ K) show $\tau_{\rm th}^2$ (300 K) reduced by $\sim 40\%$ (Fig. 2), but $\rho_{th}(300 \text{ K})$ reduced by ~ 70% (Fig. 9 of Ref. 15). More generally, Fig. 3 (bottom panel) displays values of β obtained from both thermal and defect contributions to resistivity as a function of τ^2 over a wide range in temperature and radiation dose. The reduction of β with τ^2 is similar for both cases and shows that the anomalous temperature dependence of ρ is consistent with the defect dependence when comparison is made at the same values of τ^2 . In addition, since the electron-phonon/defect parameter β is largest when the atoms are closest to the (unstable) lattice sites, both temperature and defects may stabilize the structure.

This universal reduction of the electron-phonon/ defect interactions with increasing τ^2 may apply to other properties such as T_c , the sound velocity, and magnetic susceptibility. The softening of the phonon frequencies due to the electron-phonon interactions, for example, is proportional¹⁷ to β and therefore will be comparably smaller for increased thermal and defect τ^2 . In general, we expect the behavior at lower temperatures in the defect state will be qualitatively similar to that at higher temperatures (i.e., with equivalent τ^2 's) for the defect-free state.

The authors wish to thank O. Meyer for informing us of the Karlsruhe channeling results, J.-L. Staudenmann for communicating his unpublished x-ray data, and W. Royer for his technical assistance. The Oak Ridge National Laboratory is operated by Union Carbide Corporation for the U.S. Energy Research and Development Administration.

^(a)Resident Visitor on leave from the Max-Planck-Institut für Festkörperforschung, Stuttgart, West Germany.

¹The channeling measurements described here sample approximately the first 300 Å below the surface of the crystal with a 0.5-mm-diam beam.

²For further details see L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975).

³In this calculation we have included surface effects due to a 60-Å oxide layer, which was found to yield $\chi_{\min}^{0X} = 0.003$, 0.004, and 0.005 for 20, 300, and 500 K, respectively, along [001].

⁴J. H. Barrett, F. Fujimoto, K. Komaki, and Y. Hashimoto, Rad. Effects 28, 119 (1976). See also, J. H. Barrett, Phys. Rev. B 3, 1527 (1971).

⁵P. Schweiss, in Technistitut Festkörperphysik, Gesellschaft für Kernforschung Karlsruhe, Progress Report No. KFK 2054, 1974 (unpublished), p. 12; E. Schneider, P. Schweiss, and W. Reichardt, in Superconductivity in d- and f-Band Metals, edited by D. M. Douglass (Plenum, New York, 1976).

⁶A. Maradudin, E. Montroll, G. Weiss, and I. Ipatova, in Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1971), 2nd ed., p. 303.

⁷R. Flükiger, J.-L. Staudenmann, and P. Fischer, J. Less-Common Met. 50, 253 (1976).

⁸J. H. Barrett, Phys. Rev. Lett. 31, 1542 (1973). ⁹J. M. Poate, R. C. Dynes, L. R. Testardi, and

R. H. Hammond, Phys. Rev. Lett. 37, 1308 (1976), and references therein.

¹⁰For additional references and discussion see L. C. Kimerling and J. M. Poate, in Particles and Fields-1974. AIP Conference Proceedings No. 23, edited by C. E. Carlson (American Insitute of Physics, New York, 1975), Chap. 1, p. 126.

¹¹R. C. Dynes, J. M. Poate, L. R. Testardi, A. R. Storm, and R. H. Hammond, IEEE Trans. Magn. 13, 640 (1977); J. M. Poate, L. R. Testardi, A. R. Storm, and W. M. Augustyniak, Phys. Rev. Lett. 35, 1290 (1975).

¹²O. Meyer and B. Seeber, to be published.

¹³M. Sarachik, F. Smith, A. Guha, and L. R. Testardi, to be published.

¹⁴R. Viswanathan, R. Caton, and D. Cox, to be published.

¹⁵L. R. Testardi, J. M. Poate, and H. J. Levinstein, Phys. Rev. B 15, 2570 (1977).

¹⁶W. B. McIntire and J. B. Cohen, Acta Metall. <u>23</u>, 953 (1975). A factor-of-2 difference is noted between our two-dimensional τ^2 and the one-dimensional x-ray μ_{S}^{2} of this reference. ¹⁷C. M. Varma and W. Weber, to be published.