
VOLUME 39, NUMBER 10 PHYSICAL RKVIKW LKTTKRS $ SEPTEMBER 1977

Partial Differential Approximants for Multicritical Singularities
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A recently proposed approach —partial differential approximants —for analyzing power
series in two (or more) variables for functions which exhibit singularities of multicritical,
scaling character is tested by analyzing the susceptibility series for the bicritical point
describing the Ising-Heisenberg-~ crossover in a three-dimensional c1assieal ferro-
magnet. Encouraging results are obtained for the unbiased estimation of the bicritical
point, of the multicritical exponents y and p, and of the slopes of the scaling axes.

The method of Pade approximants' for analyz-
ing the behavior of a function, f(x), of a single
variable x, known only through a finite number of
its power-series expansion coefficients, f, , is
justly famous. ' It has played an especially im-
portant role in the study of critical phenomena, "
because of its ability to handle accurately branch-
point singularities of the form f(x) = Zg(x, -x)&,
with nonintegral exponents y. In particular, by
using the D log transformation first introduced
by Baker, ' one can obtain direct, "unbiased, " es-
timates of the critical point x, and the critical ex-
ponent y; by appropriate further manipulation,
the critical amplitude, &„ can also be estimated.

In most physical contexts more than one inde-
pendent variable plays an important role: For
example, in the case of a ferromagnet or antifer-
romagnet one typically has x =J/k BT, with tem-
perature, T, and exchange integral, J, but would
also be interested iny=&/kP', where H is the
magnetic field. Physical quantities of interest,
like the susceptibility X(&,H), will then have ex-
pansions in two variables:

f(x,y)= Z f;;x'y'. (~)
is&

Given a limited number of coefficients, say f&,'
for (j,j') in some label set 3, one wants methods
for approximating such a function of two varia-
bles. Now, the most crucial feature will usually
be the expected nature of the singularities of
f(x,y). In many cases, particulary in the study
of critical and multicritical phenomena, ' ' there
will be a "multisingular point, " (x„y,), in the
vicinity of which scaling behavior is to be antici-
pated, that is,

f(x,y ) = lb I- y Z(by /lbx I'),

bx =bx —by/e„by =by -e,bx,

as bx =(x-x,) and &y =(y -y,)-0. Here y is the
exponent scaling f, while Q is the crossover ex-

ponent; the coefficients e, and e, specify the
slopes of the scaling axes. An effective method
of approximation should yield estimates for x,
andy„ for y and P, for e, and e„and for the
scaling function Z(z), which may itself display
singularities, "e.g. , of the form Z(s) = Z,lb~I
as 4z =& —z - 0, where 4 is one of a number of
possible (scaled) singular points.

An approach has recently been proposed- us-
ing "partial differential approximants" (PDA's)—which can, in principle, meet this challenge. "
The purpose of the present Letter is to demon-
strate and test this new technique numerically
on a realistic, but reasonably well understood,
example, namely bicritical crossover in an Ising-
Heisenberg-XF model ferromagnet. ' In fact, the
approach is found to perform encouragingly well,
so that one may anticipate successful applications
to a variety of less well understood physical situ-
ations, such as bicriticality in antiferromagnets,
tricritical behavior, Potts points, quantal cross-
over, percolation, etc.

A partial differential approximant E(x,y)
=+K; L~N{x&y) to a function f(x,y), with (partial-
ly) given expansion (1), is a solution of the linear
partial diff erential equation"

BE BES, (x,y)Z(x, y) = Q~(x,y)—~ZN(x, y)

whose power series expansion matches that for
f(x,y) to at least some determinate low order.
The defining equation (4) is specified by three
polynomials PL =+~, ~ xy, Q&=Z, '0
and RN =Q„,„r„„x"y",where the sums run over
the assigned label sets t H(l, l'), Ph ~(m, rn'), and
NH(n, n') of cardinality I t I =I, I M I =M, and I NI
=N. In view of the linearity, the normalization
condition p„=p L (0, 0) is usually (but not always)
appropriate. The remaining K = L +I +N —1 poly-
nomial conefficients, p». , q, and r„„., are to
be chosen by replacing I'(x,y) in (4) by the given
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expansion, (1), of f(x,y) and requiring (4) to hold
as an identity on all terms x"y" with (k, k') in a
chosen label set K with !:K l =K.

This prescription for determining P, Q, and R
(for chosen K, L, M, and N) sounds complex but
merely leads to a set of & linear algebraic equa-
tions which are readily solved by standard com-
puter routines provided they are consistent and
nonsingular. As in the determination of ordinary
D log Pade approximants (to which the new meth-
od, in fact, reduces if one imposes R=O wheny=0),
singular and inconsistent equations can arise; in-
deed, they are sometimes a sign that f(x,y) sat-
isfies an equation of the form (3) identically!"

An essential feature of a PDA is the following:
If Q(x,y) and R(x,y) have a common zero at
(x„y,) then, in the vicinity of this point, the ap
proximant E(x,y) has the scaling form (2) with
hx =x-x, a/id &y ='y yp Thus a common zero,
(x„y,), represents an estimate for a multisingu-
lar point, (x, ,y,), of f(x,y). Furthermore, cor-
responding estimates for the exponents y and Q,
and for the axis slopes e, and e„may be deter-
mined explicitly from the approximant polynomi-
als by evaluating P, =P (x„y,), Q, =

(B Q /Bx )„Q,
= (8 Q/By )„R,= (BR /Bx )» and R, = (BR/By)„where
the subscript 0 denotes x -x, and y -y, .

These theoretical conclusions and, in fact,
practical numerical results are best obtained by
solving the defining PDA equation (4) by the meth-
od of characteristics. Thus one introduces a
timelike variable 7 and the corresponding ordi-
nary differential equations

dx/dr =Q(x, y), dy/d~ =R(x,y). (5)

Given a trajectory, [x(r),y(r)], which solves
these equations, one has

f(x,y) =E(x,y) = exp[ I P(X(r'), y(~'))d~'], (6)

where appropriate boundary conditions at r = 0
are understood. This trajectory-integral expres-
sion leads" to estimates of the scaling function
&(z).

To study the effectiveness of the PDA technique
we have considered a classical (spin S =~), aniso-
tropic, Heisenberg-model ferromagnet on the
three-dimensional fcc lattice with-nearest-neigh-
bor couplings J~=J„„=J»~0and J~~=J„-O.' We
will report, in particular, results for the total
(reduced) susceptibility y = y~~+ 2 y, where y~~

=k~T(BM, /BH, ) and K~ =kqT(BM„/BH„) =kt3T(BM, /
BH,) while M„=(s, ) (for a=x,y, z).

Now on the basis of renormalization-group anal-
ysis" and the symmetry properties of K, it is

firmly believed that Heisenberg-like critical be-
havior, with' @=1.38, occurs oddly when J~=J~~,.
for J~& J~~, Ising-like (or n = 1) behavior, with ex-
ponent" y, =1.25, should occur; conversely, for
J„&J~~, one expects XY-like (or n=2) behavior,
with y@~ - 1.31. With J= 2 J~+ 3 J~~ and g = (J~
—J~~)/J, this means that a multicritical singulari-
ty occurs at g = 0 and w =J/k~T =~, I.f this con-
clusion is granted, the best variables for a se-
ries analysis of the multicritical region are' se

and g (= 0). One can then go moderately far by
standard, single-variable techniques which, in
fact, yield" w, = 0.3147 and P = 1.25. In order to
test the PDA approach, however, we will work
with the rather natural variables x =J~, /k, T and

y =J~/k&T. The pure XY and Ising models (for 8
=~) then correspond to x = 0 and y = 0, respective-
ly, but the multicritical point should be found at
x, =y, =m, and the axis slopes should be e, = 1
(g = 0) and e ~

= ——', (km = 0).
Figure 1 is a scatter diagram in the (x,y) plane

showing estimates for a range of PDA's using
from I K I =21 to 36 expansion coefficients for X

(i.e. , through orders co', m', and w'). The "ex-
act" scaling axes are drawn in the figure. It is
remarkable that the estimates tend strongly to
lie along a line parallel to (although slightly be-
low) the second sealing axis (6w = 0). The preci-
sion of these unbiased estimates, which can be
gauged by the 0.1% and 1% "boxes," is quite sat-
isfying. (As in standard Pade analysis one would
expect improvement by using biased techniques
such as the imposition of x, =y, .) Not surprising-
ly, better estimates tend to be given when the
label sets M and N, for Q and R, match most
closely.

A larger region of the (x,y) plane is displayed
in Fig. 2, for one of the better approximants
(with IL 1 =13, I M I

=
I Nl =12). Note the locus of

zeros of Qz(x, y) and RN(x', y) (dotted curves),
whose intersection, xo =0.3148 and yo

——0.3151,
locates the estimated multicritical point. The
corresponding exponent estimates are y —-1.398
and /=1.282. The broken straight lines through
(x„y,) indicate the corresponding (approximate)
scaling axes, with e, =1.07 and e, = —0.405,
while the curving lines (dashed and solid) repre-
sent trajectories computed from (5). The two
solid trajectories originate on the x and y axes
at zeros Qz(x„0) =0 and R N(0, y») =0, which,
in fact, yield estimates for the pure Ising and XY
critical points. Consequently these traj ectories
represent estimates of the Ising and XY critical
lines. It is important to notice that these critical
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crucial behavior that is very hard to obtain pro-
perly when one is restricted to single-variable
analysis. '

The unbiased estimates of y and P correspond-
ing to Fig. 1 are plotted vs x, in Fig. 3. (Because
of the correlation noted in Fig. 1, this is almost

lines enter the multicritical point to form a char-
acteristic Qicyiticai cusp, ' "of shape deter-
mined by the crossover exponent Q. It is this
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FIG. 3. Unbiased estimates of the multicritical expo-
nents y and p vs xo for approximants with K-28. The
dashed and dot-dashed curves serve only to indicate
the trend of the estimates.

FIG. 2. Trajectories in the {x,y) plane for a I13,12,
12] approximant; see text. The inset shows the {ap-
proximate) critical lines in detail in the multicritical
region; here the dot and solid lines represent best es-
timates of the multicritical point and scaling axes.

xo

T =J /k T) lane showing estimates (xo, yo) of the location of the mul, —FIG. 1. Scatter Chagram in the (v=Jg/ks, y= z/ 8 p ane o
ticritical point. Open circles denote lower order PDA's; closed circles, those of hig er or er. o e
1% "boxes" about the best estimate, and the scaling axes.
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equivalent to s, plot vs g.) The "boxes" in the fig-
ure denote the range of accepted values. As in
ordinary D log Pade analysis, ' ' a pronounced
correlation between exponent and multicritical
point estimates is observed. For the central
estimates having x, =y, (g = 0), remarkably good
exponent values are achieved. (Again, biased
estimation procedures will yield better estimates. )

Finally, a similar plot of the estimates for the
scaling-axis slopes, e, and e, (for which there
are no analogs in single-variable analysis) once
again reveals quite encouraging agreement with
the exact results although a much stronger varia-
tion with x, is observed.

En summary, we have demonstrated that partial
differential approximants provide a theoretically
powerful and numerically promising approach to
the analysis of power series in two variables in
cases where the singularity structure plays a
dominant role.
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interactions with Dr. D. Bessis, Dr. E. Brdzin,
Professor J. I. Gammel, and Dr. J. Zinn-Justin
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tion of partial differential approximants.
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