Two-Body Decays of Vector and Pseudoscalar Mesons in a Broken SU(4) Scheme^(a)

B. J. Edwards and A. N. Kamal

Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2J1

(Received 16 May 1977)

The two-body decays of the "old" and the "new" mesons are studied in a broken SU(4) scheme. The scheme succeeds in suppressing $\Gamma(\psi \to \eta_c \gamma)$. Sum rules among amplitudes are derived to support $\Gamma(\rho \to \pi \gamma) \simeq 75$ keV.

There are some outstanding problems in the radiative decay of vector mesons. The first problem is posed by the experimental¹ rate $\Gamma(\rho \rightarrow \pi \gamma)$ $= 35 \pm 10$ keV. This is not understood easily.² In a recent Letter Bohm and Teese³ claim to fit $\Gamma(\rho)$ $\rightarrow \pi \gamma$) in a SU(4) scheme. One of the purposes of this Letter is to demonstrate that the work of Ref. 3 is in error and that an understanding of the experimental value of $\Gamma(\rho - \pi \gamma)$ is still to be found. Secondly, the rate⁴ $\Gamma(\psi \rightarrow \eta_c \gamma) < 3.5 \text{ keV}$ is difficult to understand since both ψ and η_c are largely $c\overline{c}$ states and one should expect a rate of a few hundred keV. A possible mechanism for the suppression of this rate could be SU(4) multiplet mixing.⁵ In this Letter we offer a different explanation based on SU(4) symmetry breaking. The third problem is that the rates $\Gamma(\psi \rightarrow \eta \gamma) = 55$

± 12 eV and $\Gamma(\psi \rightarrow \eta'\gamma) = 152 \pm 117$ eV are much larger than $\Gamma(\psi \rightarrow \pi\gamma) = 5 \pm 3.2$ eV.⁴ Explanation for this puzzle can be given in terms of pseudoscalar mixing angles.⁶ We show, in this Letter, that one can understand this puzzle also in terms of SU(4) symmetry breaking. We also mention the work of Kazi, Kramer, and Schiller⁷ done in the context of a broken SU(4) scheme before many of the rates in the charm sector were available.

We assume that the decays of the kind $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ proceed through vector-meson dominance (VMD). The hadronic *VVP* vertex is parametrized in terms of symmetry-breaking terms transforming like the eighth and the fifteenth component of a mixed second-rank SU(4) tensor. The general structure of the $V^m \rightarrow P^i V^n$ vertex (we shall suppress the Lorentz structure throughout) is given by

$$A_{min} = g_{1}d_{min} + g_{2}d_{8ik}d_{kmn} + g_{3}(d_{8mk}d_{kin} + d_{8nk}d_{kim}) + g_{4}\delta_{8i}\delta_{mn} + g_{5}(\delta_{8m}\delta_{in} + \delta_{8n}\delta_{im}) + g_{6}d_{15ik}d_{kmn} + g_{7}(d_{15mk}d_{kin} + d_{15nk}d_{kim}) + g_{8}\delta_{15i}\delta_{mn} + g_{9}(\delta_{15m}\delta_{in} + \delta_{15n}\delta_{im}),$$
(1)

where, m, i, and n are the internal-symmetry labels, and the repeated label k is summed from 0 to 15.

To keep our arguments general, and in particular to be able to make contact with the work of Ref. 3, we write the electromagnetic current as

$$V_{\mu}^{em} = V_{\mu}^{(3)} + (1/\sqrt{3})V_{\mu}^{(8)} - (\sqrt{2}/\sqrt{3})gV_{\mu}^{(15)} + (\sqrt{2}/3)fV_{\mu}^{(0)}, \qquad (2)$$

where, at this stage, g and f are independent parameters. The $V^n \rightarrow \gamma$ vertex is then

$$A(V^{n} \rightarrow \gamma) = (e/g_{\rho}) [\delta_{n3} + (1/\sqrt{3})\delta_{n8} - (\sqrt{2}/\sqrt{3})g\delta_{n15} + (\sqrt{2}/3)f\delta_{n0}].$$
(3)

We assume that ψ and η_c are pure $c\overline{c}$ states. φ is a pure $s\overline{s}$ state and ω is a pure $(u\overline{u} + d\overline{d})/\sqrt{2}$ state. η and η' have the same quark content as in SU(3), i.e.,

$$\begin{aligned} |\eta\rangle &= \cos 45^{\circ} |\eta_{o}\rangle - \sin 45^{\circ} |\eta_{s}\rangle , \\ |\eta'\rangle &= \sin 45^{\circ} |\eta_{o}\rangle + \cos 45^{\circ} |\eta_{s}\rangle , \end{aligned}$$
(4)

where the angle 45° is strictly $(54.7^{\circ} + \theta_{p})$ with θ_{p} the pseudoscalar mixing angle (-10°) and $\eta_{\sigma} = (1/\sqrt{2})|u\bar{u} + d\bar{d}\rangle$ and $|\eta_{s}\rangle = |s\bar{s}\rangle$.

If one assumes U(4) symmetry $(g_1 \neq 0, g_i = 0,$

i = 2 to 9), then one can show the following:

$$A(\omega \to \pi\gamma) = (e/g_{\rho})g_{1},$$

$$A(\rho \to \pi\gamma) = \frac{1}{3}(e/g_{\rho})g_{1}[1 - (g - f)].$$
(5)

It would, therefore, seem that one could fit both $\Gamma(\omega - \pi\gamma)$ and $\Gamma(\rho - \pi\gamma)$. All of the amplitudes written in Ref. 3 can be derived through VMD with g = 1 and f arbitrary. Clearly, if we choose $f \approx 1/\sqrt{3}$ we can fit both of these rates. *This*, however, cannot be done. The charge operator

corresponding to the current of Eq. (2) has diagonal elements $\frac{2}{3} + \frac{1}{6}(f-g)$, $-\frac{1}{3} + \frac{1}{6}(f-g)$, $-\frac{1}{3} + \frac{1}{6}(f-g)$, $-\frac{1}{3} + \frac{1}{6}(f-g)$, and $\frac{1}{6}(f+3g)$. Only for certain values of f and g does this charge operator have the correct expectation values for the baryon and meson states. In particular $\langle p|Q|p\rangle = 1$ and $\langle n|Q|n\rangle = 0$, at $q^2 = 0$, cannot be satisfied unless f = g. With f = g, the charge of the charmed quark is $\frac{2}{3}f$.

The charges of D^0 and D^+ then imply that f = 1. We shall use f = g = 1 throughout. If f = g, then one is inevitably led, via Eq. (5), to $\frac{1}{3}A(\omega - \pi\gamma)$ $= A(\rho - \pi\gamma)$.

In our model, processes which are forbidden by the Okubo-Zweig-Iizuka (OZI) rule⁸ may proceed through the symmetry-breaking terms of Eq. (1). A new sum rule is now obtained relating $A(\rho + \pi\gamma)$ to other radiative-decay amplitudes:

$$A(\rho \to \pi\gamma) = \frac{1}{3}A(\omega \to \pi\gamma) - \frac{1}{3}\sqrt{2}A(\phi \to \pi\gamma) + (4/3\sqrt{2})A(\psi \to \pi\gamma), \tag{6}$$

However, the OZI-rule-violating amplitudes are small and the U(4) relation between $A(\rho + \pi\gamma)$ and $A(\omega - \pi\gamma)$ still holds approximately. One cannot fit both $\Gamma(\omega - \pi\gamma)$ and $\Gamma(\rho - \pi\gamma)$ simultaneously. One can also derive the sum rule,

$$A(\rho \to \eta\gamma) = (1/\sqrt{2})A(\omega \to \pi\gamma) + \frac{1}{2}A(\phi \to \pi\gamma) + (3\sqrt{2}/4)A(\psi \to \eta\gamma) - \frac{1}{4}(\sqrt{2}-1)A(\psi \to \pi\gamma).$$

$$\tag{7}$$

Again, if we ignore all OZI-rule-violating amplitudes we get $\Gamma(\rho + \eta\gamma) \approx 50$ keV, in agreement with one of the solutions obtained recently by Andrews *et al.*⁹ The value of $\Gamma(\rho + \eta\gamma)$ obtained in Ref. 3 is an order of magnitude too low.

To fit our model parameters we use the rates for $K^{*0} \rightarrow K^0 \gamma$, $\omega \rightarrow \pi \gamma$, $\varphi \rightarrow \pi \gamma$, $\varphi \rightarrow \eta \gamma$, $\psi \rightarrow \pi \gamma$, ψ $-\eta\gamma$, and $\psi - \eta'\gamma$. These rates depend on $[g_1]$ $+(g_6/\sqrt{6})+(2g_7/\sqrt{6})], (g_2+2g_3), g_4, g_5, g_8, \text{ and}$ g_9 . In particular, $\Gamma(\psi \rightarrow \pi \gamma)$ depends on g_9 alone, and $\Gamma(\psi - \eta\gamma)$ and $\Gamma(\psi - \eta'\gamma)$ on g_4 and g_8 . Therefore, the last two rates can be fitted independent*ly of* $\Gamma(\psi - \pi\gamma)$. The $\psi - \eta_c \gamma$ amplitude depends on $(\frac{1}{3}g_1 - g_6/\sqrt{6} - 2g_7/\sqrt{6}), g_5, g_8, \text{ and } g_9 \text{ and thus}$ can be controlled by a suitable choice of $(g_6 + 2g_7)$. On the other hand, $K^{*+} \rightarrow K^+ \gamma$ and $D^{*0} \rightarrow D^0 \gamma$ require, in addition, the knowledge of g_3 ; $D^{*+} \rightarrow D^+ \gamma$ and $F^{*+} \rightarrow F^+ \gamma$ require the knowledge of both g_3 and g_7 . In Table I we have listed our fit and predictions. The rates used in the fit are put in parentheses. We have used the same charmed-meson masses as in Ref. 3. We stress that the rates for K^{*+} , D^{*0} , D^{*+} , and F^{*+} have been calculated with $g_3 = g_7 = 0$. Information on these rates will help determine these model parameters.

In the U(4)-symmetric limit of the *VVP* vertex, one finds

$$A (D^{*0} - D^0 \gamma) = \frac{4}{3} A(\omega - \pi \gamma),$$

$$A (D^{*+} - D^+ \gamma) = A (F^{*+} - F^+ \gamma) = \frac{1}{3} A(\omega - \pi \gamma).$$
(8)

These would produce $\Gamma(D^{*0} \rightarrow D^0 \gamma) \simeq 70$ keV and $\Gamma(D^{*+} \rightarrow D^+ \gamma) \simeq 4$ keV. The rates predicted in Ref. 3 for the charmed mesons are two orders of magnitude lower due to their factor $\Phi(m_v, m_p)$ which, of course, has no effect on the ratio $\Gamma(\omega \rightarrow \pi \gamma)/\Gamma(\rho \rightarrow \pi \gamma)$.

The hadronic VVP vertex of Eq. (1) also yields

TABLE I. Decay rates. (See text for explanations.)

mode Rate (KeV) Exp. (KeV) $K^{*0} \cdot \chi^{0} \gamma$ (100) 74±35 ^a $\phi + \pi \gamma$ (5.9) 5.7±2.1 ^a $\phi + \pi \gamma$ (63) 64±10 ^b $\omega + \pi \gamma$ (870) 880±60 ^a $\psi + \pi \gamma$ (0.005) 0.005±0.0032 ^c $\psi + \eta \gamma$ (0.055) 0.055±0.012 ^c $\psi + \eta \gamma$ (0.150) 0.152±0.117 ^c $\rho + \eta \gamma$ 78 35±10 ^d $\rho + \eta \gamma$ 78 35±10 ^d $\rho + \eta \gamma$ 58 50±13 or 76±15 ^e $\eta^{+} + \rho \gamma$ 130 <300 ^a $\phi + \eta^{+} \gamma$ 0.24 - $\omega + \eta \gamma$ 4.9 3.0 ^{+2.5} / _{-1.8} or 29±7 ^e $\eta^{+} \omega \gamma$ 6.5 <50 ^a $\eta_{c}^{+} \rho \gamma$ 1.0 - $\eta_{c}^{+} \rho \gamma$ 1.0 - $\eta_{c}^{+} \phi \gamma$ 250 - $\eta_{c}^{+} \phi \gamma$ 0.0 ^g <3.5 ^f $k^{*+} \eta_{c} \gamma$ 0.0 ^g <3.5 ^f $k^{*+} \eta_{c} \gamma$ 0.76 ^g / ₁	M- 3-		
$\chi^{-O} + \chi^{O} \gamma$ (100) 74 ± 35^{a} $\phi + \pi \gamma$ (5.9) 5.7 ± 2.1^{a} $\phi + \pi \gamma$ (63) 64 ± 10^{b} $\omega + \pi \gamma$ (63) 64 ± 10^{b} $\omega + \pi \gamma$ (870) 880 ± 60^{a} $\psi + \pi \gamma$ (0.005) 0.005 ± 0.0032^{c} $\psi + \pi \gamma$ (0.005) 0.005 ± 0.0032^{c} $\psi + \pi \gamma$ (0.055) 0.05 ± 0.013^{c} $\psi + \pi \gamma$ (0.055) 0.05 ± 0.013^{c} $\psi + \pi \gamma$ (0.150) 0.152 ± 0.117^{c} $\rho + \pi \gamma$ 78 35 ± 10^{d} $\rho + \pi \gamma$ 78 50 ± 13 or 76 ± 15^{c} $n' + \rho \gamma$ 130 $<300^{a}$ $\phi + \eta' \gamma$ 0.24 $ \omega + \eta \gamma$ 4.9 $3.0^{+2.5}_{-1.8}$ or 29 ± 7^{e} $n' + \omega \gamma$ 6.5 $<50^{a}$ $n' + \omega \gamma$ 250 $ \eta - \psi + \eta_{c} \gamma$ 0.0^{q} $<3.5^{f}$ $\chi^{+} + \chi \chi^{+} \gamma$ 21^{h} $<80^{a}$ 0^{e} + \gamma^{e} \gamma 0.76^{q}, 1 <	Mode	Rate (KeV)	Exp. (KeV)
$\begin{array}{c cccccc} \varphi + \pi \gamma & (5.9) & 5.7 \pm 2.1^{\rm A} \\ \hline \varphi + \eta \gamma & (63) & 64 \pm 10^{\rm b} \\ \hline \omega + \pi \gamma & (870) & 880 \pm 60^{\rm a} \\ \hline \psi + \pi \gamma & (0.005) & 0.005 \pm 0.0032^{\rm C} \\ \hline \psi + \eta \gamma & (0.055) & 0.055 \pm 0.012^{\rm C} \\ \hline \psi + \eta \gamma & (0.150) & 0.152 \pm 0.117^{\rm C} \\ \hline \varphi + \eta \gamma & 78 & 35 \pm 10^{\rm d} \\ \hline \varphi + \eta \gamma & 78 & 35 \pm 10^{\rm d} \\ \hline \varphi + \eta \gamma & 78 & 35 \pm 10^{\rm d} \\ \hline \varphi + \eta \gamma & 58 & 50 \pm 13 \text{ or } 76 \pm 15^{\rm c} \\ \eta + \varphi \gamma & 130 & <300^{\rm a} \\ \hline \varphi + \eta \gamma & 0.24 & - \\ \hline \omega + \eta \gamma & 4.9 & 3.0^{+2.5}_{-1.8} \text{ or } 29 \pm 7^{\rm B} \\ \eta + \psi \gamma & 6.5 & <50^{\rm a} \\ \eta - \psi \gamma & 1.0 & - \\ \eta _{c} + \varphi \gamma & 1.0 & - \\ \eta _{c} + \varphi \gamma & 1.50 & - \\ \hline \eta _{c} + \psi \gamma & 0.0^{\rm g} & <3.5^{\rm f} \\ K^{*+} + K^{+} \gamma & 21^{\rm h} & <80^{\rm a} \\ D^{*0} + D^{\circ} \gamma & 18^{\rm g} , h & - \\ D^{*+} D^{+} \gamma & 0.76^{\rm g} , i & - \\ F^{*+} + F^{+} \gamma & 0.090^{\rm g} , i & - \end{array}$	K [°] ^O →K ^O γ	(100)	74±35 ^a
$\begin{array}{c ccccc} & \phi + n\gamma & (63) & 64\pm 10^b \\ \hline & \omega + \pi\gamma & (870) & 880\pm 60^a \\ \hline & \psi + n\gamma & (0.005) & 0.005\pm 0.0032^C \\ \hline & \psi + n\gamma & (0.055) & 0.055\pm 0.012^C \\ \hline & \psi + n'\gamma & (0.150) & 0.152\pm 0.117^C \\ \hline & \phi + n\gamma & 78 & 35\pm 10^d \\ \hline & \rho + n\gamma & 58 & 50\pm 13 \text{ or } 76\pm 15^C \\ \hline & n' + \rho\gamma & 130 & <300^a \\ \hline & \phi + n'\gamma & 0.24 & - \\ \hline & \omega + n\gamma & 4.9 & 3.0^{+2.5}_{-1.8} \text{ or } 29\pm 7^E \\ \hline & n' + \omega\gamma & 6.5 & <50^a \\ \hline & n_c^+ \rho\gamma & 1.0 & - \\ \hline & n_c^+ \rho\gamma & 150 & - \\ \hline & \psi + n_c\gamma & 0.0^g & <3.5^f \\ \hline & K^{*+} + K^+ \gamma & 21^h & <80^a \\ \hline & D^{*0} + D^{\circ}\gamma & 18^{g,h} & - \\ \hline & D^{*+} + D^+ \gamma & 0.76^{g,1} & - \\ \hline & F^{*+} + F^+ \gamma & 0.090^{g,1} & - \\ \hline \end{array}$	φ→πγ	(5.9)	5.7±2.1 ^a
$\omega + \pi \gamma$ (870) 880 ± 60^a $\psi + \pi \gamma$ (0.005) 0.005 ± 0.0032^c $\psi + \eta \gamma$ (0.055) 0.005 ± 0.012^c $\psi + \eta \gamma$ (0.150) 0.152 ± 0.117^c $\phi + \eta \gamma$ (0.150) 0.152 ± 0.117^c $\rho + \pi \gamma$ 78 35 ± 10^d $\rho + \eta \gamma$ 58 50 ± 13 or 76 ± 15^c $\eta + \rho \gamma$ 130 $<300^a$ $\phi + \eta \gamma$ 0.24 - $\omega + \eta \gamma$ 4.9 $3.0^{+2.5}_{-1.8}$ or 29 ± 7^e $\eta + \omega \gamma$ 6.5 $<50^a$ $\eta_c + \rho \gamma$ 1.0 - $\eta_c + \rho \gamma$ 1.0 - $\eta_c + \rho \gamma$ 1.50 - $\eta_c + \omega \gamma$ 0.0^g $<3.5^f$ $K^{*+} + K^+ \gamma$ 21^h $<80^a$ $D^{*o} \to D^o \gamma$ $18^g , h$ - $D^{*+} + D^+ \gamma$ $0.76^g , 1$ - $p^{*+} + F^+ \gamma$ $0.090^{g / 1}$ -	φ→ηγ	(63)	64±10 ^b
$\begin{array}{c c c c c c c c c c c } & \psi + n\gamma & (0.005) & 0.005 \pm 0.0032^C \\ \hline \psi + n\gamma & (0.055) & 0.055 \pm 0.012^C \\ \hline \psi + n'\gamma & (0.150) & 0.152 \pm 0.117^C \\ \hline \rho + n\gamma & 78 & 35 \pm 10^d \\ \hline \rho + n\gamma & 78 & 35 \pm 10^d \\ \hline \rho + n\gamma & 58 & 50 \pm 13 \text{ or } 76 \pm 15^C \\ \hline n' + \rho\gamma & 130 & <300^a \\ \hline \phi + n'\gamma & 0.24 & - \\ \hline \omega + n\gamma & 0.24 & - \\ \hline \omega + n\gamma & 6.5 & <50^a \\ \hline n' + \omega\gamma & 6.5 & <50^a \\ \hline n_c^{-} \rho\gamma & 1.0 & - \\ \hline n_c^{+} \rho\gamma & 250 & - \\ \hline n_c^{+} \phi\gamma & 250 & - \\ \hline n_c^{+} \phi\gamma & 150 & - \\ \hline \psi + n_c\gamma & 0.0^g & <3.5^f \\ \hline K^{*+} + K^{*}\gamma & 21^h & <80^a \\ \hline D^{*0} + D^{*0}\gamma & 18^{g,h} & - \\ \hline D^{*+} D^{+}\gamma & 0.76^{g,i} & - \\ \hline F^{*+} + F^{*}\gamma & 0.090^{g,1} & - \\ \hline \end{array}$	ω≁πγ	(870)	880±60 ^a
$\begin{array}{c c c c c c c c c } \psi +n\gamma & (0.055) & 0.055\pm 0.012^{C} \\ \psi +n\gamma & (0.150) & 0.152\pm 0.117^{C} \\ \rho +n\gamma & 78 & 35\pm 10^{d} \\ \hline \rho +n\gamma & 58 & 50\pm 13 \text{ or } 76\pm 15^{e} \\ \hline n' + o\gamma & 130 & <300^{a} \\ \hline \phi +n\gamma & 0.24 & - \\ \hline \omega +n\gamma & 4.9 & 3.0^{+2.5}_{-1.8} \text{ or } 29\pm 7^{e} \\ \hline n' + \omega\gamma & 6.5 & <50^{a} \\ \hline n' + \omega\gamma & 6.5 & <50^{a} \\ \hline n_{c} + \rho\gamma & 1.0 & - \\ \hline n_{c} + \phi\gamma & 250 & - \\ \hline n_{c} + \omega\gamma & 150 & - \\ \hline \psi +n_{c}\gamma & 0.0^{g} & <3.5^{f} \\ \hline K^{*+} + K^{+}\gamma & 21^{h} & <80^{a} \\ \hline D^{*o} + D^{\circ}\gamma & 18^{g}, h & - \\ D^{*+} + D^{+}\gamma & 0.76^{g}, 1 & - \\ \hline F^{*+} + F^{+}\gamma & 0.090^{g}, 1 & - \\ \end{array}$	ψ≁πγ	(0.005)	0.005±0.0032 ^C
$\begin{array}{c c c c c c c c c } \psi + n' \gamma & (0.150) & 0.152 \pm 0.117^{C} \\ \hline \rho + \pi \gamma & 78 & 35 \pm 10^{d} \\ \hline \rho + \eta \gamma & 58 & 50 \pm 13 \text{ or } 76 \pm 15^{e} \\ \hline n' + \rho \gamma & 130 & <300^{a} \\ \hline \phi + n' \gamma & 0.24 & - \\ \hline \omega + \eta \gamma & 4.9 & 3.0^{+2.5}_{-1.8} \text{ or } 29 \pm 7^{e} \\ n' + \omega \gamma & 6.5 & <50^{a} \\ \hline n_{c} + \rho \gamma & 1.0 & - \\ \hline n_{c} + \rho \gamma & 1.0 & - \\ \hline n_{c} + \phi \gamma & 250 & - \\ \hline \eta_{c} + \omega \gamma & 0.0^{g} & <3.5^{f} \\ \hline \kappa^{*+} + \kappa^{+} \gamma & 21^{h} & <80^{a} \\ \hline D^{*0} + D^{*} \gamma & 0.76^{g} + i \\ \hline p^{*+} + p^{*} \gamma & 0.76^{g} + i \\ \hline p^{*+} + p^{*} \gamma & 0.99^{g} + i \\ \hline \end{array}$	ψ≁ηγ	(0.055)	0.055±0.012 ^C
$\begin{array}{c c c c c c c c c c } \hline \rho + \pi \gamma & 78 & 35 \pm 10^d \\ \hline \rho + \pi \gamma & 58 & 50 \pm 13 \text{ or } 76 \pm 15^e \\ \hline n' + \rho \gamma & 130 & <300^a \\ \hline \phi + \pi' \gamma & 0.24 & - \\ \hline \omega + \pi \gamma & 4.9 & 3.0^{+2.5}_{-1.8} \text{ or } 29 \pm 7^e \\ \hline n' + \omega \gamma & 6.5 & <50^a \\ \hline n_c^{+} \rho \gamma & 1.0 & - \\ \hline n_c^{+} \phi \gamma & 250 & - \\ \hline n_c^{+} \phi \gamma & 250 & - \\ \hline \eta_c^{+} \omega \gamma & 0.0^g & <3.5^f \\ \hline K^{+} + \kappa^{+} \gamma & 0.0^g & <3.5^f \\ \hline K^{+} + \kappa^{+} \gamma & 0.76^{g} \cdot 1 & - \\ \hline p^{+} + p^{+} \gamma & 0.76^{g} \cdot 1 & - \\ \hline F^{+} + F^{+} \gamma & 0.99^{g} \cdot 1 & - \\ \hline \end{array}$	ψ≁η'γ	(0.150)	0.152±0.117 ^C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ≁πγ	78	35±10 ^d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ→ηγ	58	50±13 or 76±15 ^e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	η'→ργ	130	<300 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	φ→η'γ	0.24	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ω→ηγ	4.9	$3.0^{+2.5}_{-1.8}$ or 29 ± 7^{e}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	η'→ωγ	6.5	<50 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^η c ^{→ργ}	1.0	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	η _c +φγ	250	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^η c ^{→ωγ}	150	-
$K^{*+} \cdot K^{+} \gamma$ 21 ^h <80 ^a $D^{*0} \cdot D^{0} \gamma$ 18 ^g \cdot h - $D^{*+} \cdot D^{+} \gamma$ 0.76 ^g \cdot i - $F^{*+} \cdot F^{+} \gamma$ 0.090 ^g \cdot i -	ψ+n _c γ	0.0 ^g	<3.5 ^f
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K^{*+} \rightarrow K^{+} \gamma$	21 ^h	<80 ^a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ^{*O} →D ^O γ	18 ^{g,h}	-
F ^{*+} →F ⁺ γ 0.090 ^g ,i -	D ^{*+} →D ⁺ γ	0.76 ^{g,i}	-
	F ^{*+} →F ⁺ γ	0.090 ^{g,i}	

^aT. G. Trippe *et al.*, Rev. Mod. Phys. <u>48</u>, No. 2, Pt. 2, S51 (1976).

^bThis is the weighted average of figures in the reference above (T. G. Trippe *et al.*) and Ref. 9.

^cW. Braunschweig *et al.*, Phys. Lett. <u>67B</u>, 243 (1977). ^dRef. 1.

^fRef. 4.

 ${}^{g}(\boldsymbol{g}_{6}+2\boldsymbol{g}_{7})$ was chosen to suppress $\psi \to \eta_{c}\gamma$. $\Gamma(\psi \to \eta_{c}\gamma)$ < 3.5 keV (Ref. 4) results in the following constraints: 15 keV < $\Gamma(D^{*0} \to D^{0}\gamma)$ < 21 keV, 0.61 keV < $\Gamma(D^{*+} \to D^{+}\gamma)$

<0.92 keV, 0.04 keV < $\Gamma(F^{*+} \rightarrow \gamma)$ < 0.15 keV.

$$h \varphi_0 = 0$$
.

$${}^{i}g_{3} = g_{7} = 0$$
.

relations among the decay amplitudes of the ψ into a vector and a pseudoscalar meson,

$$A(\psi - \rho^{0}\pi^{0}) = A(\psi - K^{0}\overline{K}^{0}) = -\sqrt{2}A(\psi - \eta\varphi)$$

= $\sqrt{2}A(\psi - \eta'\varphi) = -\frac{1}{2}\sqrt{3}g_{0}.$ (9)

The following ratios then result [as compared to experimental data (Ref. 4)]:

	This work	Experiment
$\frac{\Gamma(\psi \to K\overline{K}^*, \text{all})}{\Gamma(\psi \to \pi\rho)}$	1.1	1.1 ± 0.2
$\frac{\Gamma(\psi \to \eta \varphi)}{\Gamma(\psi \to \pi \rho \text{, all})}$	0,13	0.064 ± 0.038
$\frac{\Gamma(\psi \to \eta' \varphi)}{\Gamma(\psi \to \pi \rho, \text{all})}$	0.093	0.045 ± 0.037

VMD relates $\Gamma(\psi + \pi\gamma)$ to $\Gamma(\psi + \pi\rho)$ by $\Gamma(\psi - \pi\gamma)$ = 10⁻³ $\Gamma(\psi - \pi\rho, \text{all})$.¹⁰ Using $\Gamma(\psi - \pi\rho, \text{all})$ = 0.76 ± 0.19 keV,⁴ we find that $\Gamma(\psi - \pi\gamma) \sim 1$ eV. However, the experimental rate⁴ is 5± 3.2 eV. *VMD*, contrary to expectations, does not appear to be working well. Thus if we fit $\Gamma(\psi - \pi\gamma)$ to 5 eV, we produce $\Gamma(\psi - \pi\rho)$, $\Gamma(\psi - KK^*)$, $\Gamma(\psi - \eta\varphi)$, and $\Gamma(\psi - \eta'\varphi)$ too large roughly by a factor of 5.

VMD also allows us to predict $P \rightarrow 2\gamma$ rates once the $V \rightarrow P\gamma$ rates are fitted. We find $\Gamma(\pi \rightarrow 2\gamma) = 7.04 \text{ eV}$, $\Gamma(\eta \rightarrow 2\gamma) = 0.56 \text{ keV}$, $\Gamma(\eta' \rightarrow 2\gamma) = 5.72 \text{ keV}$, and $\Gamma(\eta_c \rightarrow 2\gamma) = 280 \text{ eV}$. The last rate is determined with parameters which forbid $\psi \rightarrow \eta_c \gamma$. If we impose a constraint $\Gamma(\psi \rightarrow \eta_c \gamma) < 3.5 \text{ keV}$, we get $\Gamma(\eta_c \rightarrow 2\gamma) < 3.7 \text{ keV}$.

Lastly, a straightforward use of VMD with f = g = 1 for off-shell photon yields for the squares of the coupling constants of ρ , ω , φ , and ψ decaying into a lepton pair the ratio 9:1:2:8. This re-

sults in a $\psi - e^+e^-$ rate which is too large by a factor of 4. For off-shell photons $(q^2 = m_{\psi}^2)$ one might expect a q^2 dependence in the coupling constants to play a role. In fact, if we set $f = g = \pm \frac{1}{2}$ at $q^2 = m_{\psi}^2$ we get 9:1:2:2 (for the above ratio), in agreement with experiments.⁴

We thank Ron Torgerson and David Boal for discussions.

^(a)Work supported in part by the National Research Council of Canada.

¹B. Gobbi *et al.*, Phys. Rev. Lett. <u>33</u>, 1450 (1974), and <u>37</u>, 1439 (1976).

²B. J. Edwards and A. N. Kamal, Phys. Rev. Lett.
<u>36</u>, 241 (1976), and Ann. Phys. (N.Y.) <u>102</u>, 252 (1976);
D. H. Boal, R. H. Graham, and J. W. Moffat, Phys.
Rev. Lett. <u>36</u>, 714 (1976); R. L. Thews, Phys. Rev.
D <u>14</u>, 3021 (1976); P. J. O'Donnell, to be published.

³A. Bohm and R. B. Teese, Phys. Rev. Lett. <u>38</u>, 629 (1977).

⁴B. H. Wiik and G. Wolf, DESY Report No. DESY 77/ 01 (to be published). All ψ decay rates we use are taken from this reference. Where more than one experimental number exists we take a weighted average.

⁵D. H. Boal, Phys. Rev. Lett. <u>37</u>, 1333 (1976).

⁶H. Fritzsch and J. D. Jackson, Phys. Lett. <u>66B</u>, 365 (1977); D. H. Boal and R. Torgerson, Phys. Rev. D <u>15</u>, 327 (1977).

⁷A. Kazi, G. Kramer, and D. H. Schiller, Acta Phys. Austriaca 45, 65, 195 (1976).

⁸S. Okubo, Phys. Lett. <u>5</u>, 165 (1963); G. Zweig, CERN Report No. 8419/TH412, 1964 (unpublished); I. Iizuka, K. Okada, and O. Shito, Prog. Theor. Phys. <u>35</u>, 1061 (1966).

⁹D. E. Andrews *et al.*, Phys. Rev. Lett. <u>38</u>, 198 (1977). ¹⁰R. N. Cahn and M. S. Chanowitz, Phys. Lett. <u>59B</u>, 277 (1975).

Systematics of Neutron-Induced-Fission Cross Sections in the MeV Range^(a)

J. W. Behrens

Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 7 April 1977)

Evidence of systematic behavior in neutron-induced-fission cross sections has been observed in the actinide elements. Recently measured fission cross-section ratios show this behavior over the incident-neutron-energy range from 3 to 5 MeV.

Among the earliest studies of fission systematics were those of Huizenga^{1,2} and Batzel,³ who plotted σ_f/σ_T and Γ_n/Γ_f ratios (derived from cross-section measurements) as a function of the liquid-drop-model fissionability parameter Z^2/A . Other early studies of systematic behavior include the systematics of spontaneous fission halflives^{4,5} and the systematics of fission thresholds.^{6,7} All were studied as a function of Z^2/A . In 1955 Barschall⁸ showed an apparent correlation between measured fission cross sections at an incident-neutron energy of 3 MeV and the parameter $Z^{4/3}/A$; however, no significance to this parameter was claimed. Smith, Smith, and Henk-