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Y“Barger and Phillips (Ref. 12) estimate on the basis
of a charm-production model, that the corrected rate
for o(2u)/o(1y) is 0.5x1072,
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A classification of the Yang-Mills fields is presented using spinor methods. Each class
of fields is associated with certain values of five invariants, of which four are complex

and one is real,

In this Letter I give a classification of the clas-
sical Yang-Mills fields along with their invari-
ants using spinor methods."! Two diagrams are
consequently presented that describe the classi-
fication. Not only the problem of classification
of gauge fields is of interest per se, but it is of
considerable importance in obtaining exact solu-
tions of the Yang-Mills field equations. This
fact is well-known in general-relativity theory.

The problem of classifying the Yang-Mills
fields has recently been discussed using the
method of infinitesimal holonomy group.? As
has been pointed out® the classification obtained
in this method, however, is not gauge invariant.
Hence the physical meaning of such a classifica-
tion is not clear since one class of fields can be
transferred into another by a guage transforma-
tion. My method of classification is invariant un-
der the product of the space-time and gauge
groups. This group is taken here as SL(2,C)
® SU(2).

The invariants and the classification® of the
Yang-Mills fields were also discussed using the
vector methods.* A total of nine real invariants
were found that describe a complete set of inde-
pendent invariants. However, the method proved
to be useless for the classification problem. The
eigenvalue-eigenvector calculation becomes so
cumbersome that computer use was needed with-
out achieving the desired classification. The
problem of classification was thus left unsolved.
It was pointed out, however, that three types of
different fields can be isolated and associated
with different values of the invariants. These
are those fields for which (1) all invariants are
different from each other; (2) all invariants are
zero; or (3) the invariants satisfy a certain alge-
braic relation between themselves. It is well

The whole classification is described in terms of two diagrams.

known, however, that when the invariants satisfy
a certain relation between themselves, it is not
necessary that one obtain only one kind of field.
Both the electromagnetic and the gravitational
fields are of such nature. For example, when
all invariants of the gravitational fields vanish,
one obtains three different types of fields rather
than just one. In the Yang-Mills case the situa-
tion is even more complicated because of the
double group structure. I show in the following
that one has exactly six independent relations
between the invariants (see Figs. 1 and 2) rather
than the three relations that were pointed out us-
ing the vector method.* I also show that associ-
ated with these relations between the invariants
there are exactly twelve independent and physi-
cally different types of Yang-Mills fields (see
Figs. 1 and 2), rather than the only three fields
found so far.* I thus have a complete and maxi-
mally detailed classification of the Yang-Mills
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FIG. 1. Isovector diagram of classification. An ar-
row A— B indicates that type-B field is obtained from
type-A field. The symbols in the diagram are as fol-
lows: IV=X,aps5 IIV= By, DV =0yuByves TV =0,
(where oy, is defined by ay,0., = agay); Nv= Qa0 Y3
and 0 is the zero field (included for completeness), If
one chooses the vector vy, in case Dv to be real then
in addition to satisfying the conditions indicated in the
diagram it satisfies R =pp.

Q=R=8=T=0
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FIG. 2. Isospinor diagram of classification. An ar-
row A— B indicates that type-B field is obtained from
type-A field. The symbols in the diagram are as fol-

lows: Is= o, yByns IS = ayBs0ns DS = aaPsYuOys
IIIs = q y y 0t Oy (Where o, is defined by oy, 05, = 00y
and o g1y = 0u0g1); NS =0y ,057)y Oy; and 0 is the
zero field (included for completeness).

fields along with their diagrams. For complete-
ness, I also give the invariants of the combined
Yang-Mills and other fields such as the gravita-
tional field.

The spinor equivalent of a gauge-field strength
F ., is a complex function X 45, (for details see
Ref. 1). Here the indices A and B are SL(2,C)
spinor indices taking the values 0 and 1 whereas
k=1, 2, and 3 describe the isospin vector compo-
nents in the SU(2) space. The spinor X g, is sym-
metric: Xap. =Xsar; hence it has 3 X3 complex
components. This is equivalent to the eighteen
real components of the field strengths F ;.

The same field can be described as a quantity
having two SL(2,C) spinor indices and two SU(2)
spinor indices, Xssux, Where M and N take the
values 1 or 2. The quantity x 45 can thus be de-
scribed as a matrix whose rows and columns
are fixed by the indices M and N, i.e., (Xap)un-
The matrix x,5 is then Hermitian and traceless.
The relation between X pyy and X 45, is given by

XaBuN = XABkUMNk/‘/E,

1)
XABr =XABMNUNMk/ ‘/Z
or, in matrix notation,
XaB =XABk°'k/‘/§,
(2)

XaBr = Tr(XABGk)/‘/Z_:

where o” are the usual Pauli matrices. It should
be emphasized that X 4gyy is not symmetric with
respect to its indices M and N.

A general field x 454y may or may not be decom-
posed into products of irreducible components of
one or both types of spinor indices. Hence one
can have fields with an isospin index having the
form of a vector, Xsps, Or having the form of
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products of SU(2) spinors, Xasuxy =®uuBeyn-
Here brackets indicate symmetrization, i.e.,

1
B =2(QXaiBay +@ puBan)-

One can call the first type a vector-type field,

the second, a spinor-type field. Each type can

be further decomposed into irreducible products.
The field x 45, can be decomposed into @8z, or

@ (4Bpyyr. Of course, @Bsy, can be decomposed in-
to @(4BR) Vs, O Q(uQ gy, OF Q40 p)Y,. Here tp, is
defined by ag,ac,=agac. All of these field can
naturally go over into the zero field (see Fig. 1).
A spinor-type field, likewise, can be decomposed
into @uuBp)Ons XaBr)YuOn; Xan®s)On, ABryYuOn,
and the zero field (see Fig. 2). From the spinor
Xapr One can construct one real and four complex
invariants. These are given by

P=xasxs"",

Q =XAiBXBjCXCkA€ijk’

R =X 4 Xi*PXcrpnXiC P, @)
S =XassXa*PXcoixa"?

N AB ¢ EF
T =XapeXi" XcomXn XEFpXd  €amp€ing:

Here P, @, S, and T are complex whereas R is
real.

The above relations can also be written in
terms of the matrices x,5. Using the fact that

Tr(o*o?) =26%,
Tr(oto’o®) =2i€y;,,
one obtains

p-= Tr(XA.BXAB) s

Q=- i2'/? Tr(xa"xs"xc™),
R =Tr(x,px"®"®) Tr(x**xcrn "), (4)
8§ =Tr(xasx“?) Tr(x**xcp),

T == 2 Tr(XasXcoXzr) Tr(x*?Xx°

These five invariants are the only ones that the
Yang-Mills fields have. Their calculated values
for different fields are listed in Figs. 1 and 2
and in the sequel. The construction of these in-
variants is completely analogous to the invari-
ants one obtains for the electromagnetic and the
gravitational fields. When described in terms of
a spinor, the Maxwell field ¢ 45 yields the only
complex invariant®

K =¢AB(/7AB =7!1_(fuvf‘w+ ifpu*f’w)- (5)

Here f,, is the Maxwell tensor and *f*” is its
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dual,
*fﬂl/ =%€“yp cfpo

The gravitational field yields, on the other
hand, the two complex invariants

I=Y4pcp ZPABCD, J= l/)coABll)EFCD‘PABEF- (6)

Here ¢ 5¢cp is the Weyl spinor.

More invariants of the coupled gravitational-
electromagnetic and gravitational-Yang-Mills
fields can be constructed. In the first case one
has

L=¢45*Pocp,

M= CPABZPCDABZpEFCD(pEF'

In the second case one has
U=Xas Z/)ABCDXCDk ,

V= XABk‘PCD lpEFCD EF

Of course, one can also find the invariants of the
coupled three fields but I will not go through that
here.

The invariants P, @, R, S, and T can also be
expressed in terms of the matrices*

K;;=F; F, J;;=F,;*F . 9)

(M

(8)

ete.

Here F,, is the Yang-Mills field strengths and
*F M ig its dual,

R = Lebwpop (10)

where €"P%is equal to +1 or — 1, depending upon
whether pypo is an even or an odd permutation of
0123, and zero otherwise. Then one obtains

=X(TrK +i TrJ), Q=5 +it'),
R = 45(TrK?+ TrJ?), (11)
S = 15 (TrK® = TrJ?) +§ i TrJK),
= (detK +i detJ),
where
t=g€imFuF oyl F ol (12a)
t'==5€ 0 *F " F P XF N (12b)

It has been shown that the invariants TrJ, TrJ?Z,

detJ, TrK, TrK?, detk, Tr(JK), ¢, and #’ can al-
so be taken as independent invariants.* However,
it appears that it is more natural to work with
the invariants P, @, R, S, and T. For example
the condition S =P? is equivalent to the conditions
TrK) = (Trd)(TrK) and TrK? - (TrK)? = TrJ?

—~ (TrJ)?. One also notices that the number of
classes and subclasses of diffevent fields far

surpasses that thought to exist befove.* In the
sequel we find the value of each of these invari-
ants for all possible different fields.

As a simple illustration of the above consider
the field of a monopole that has both “electric”
and “magnetic” charges.® Such a field is given by

e xix® 1 KMk
FOJ‘k:_E PR ijféj €iim I (13)
The spinor y,p, is then given by
e+i x*
XaBe=lanBye > VRIS (14)

where 7, and n, are two arbitrary SL(2,C) spin-
ors satisfying I,»#*=1. Hence this field is of
type Dv (see Fig. 1). Its invariants (see below)
are given by

(1-¢ 2ie ,
2g) 2%(Fukakuv+zFuuk *F),
(15)
Q@=0, R=PP, S=P? T=0.

P=

In conclusion I list below the values of the in-
variants P, @, R, S, and T for each particular
case: Class Iv,

P#Q+R+S+T#0; (16)
class Ilv,

P=-34,4,, @=0, R=1(4,4,)7, )

S=P* T=0,

where A,=a,B,*; class Dv,
P=3B%,7,, @=0,

(18)
l(BB)z(')’k'}'k) ’ S=P2,

T=0,
where B =a,8*; if 7, can be chosen to be real,
then one has in this case R = PP.

For classes Illy, Nv, and 0 all invariants van-
ish. Class Is,

P=—ab, =0,
=4${40ab¥ + 2ab detT
+2ab detC +[ Tr(C?C))?}, (19)
=4{4a%°? + 4ab detC + (TrC?)?},
T = - ${8a°® = 6a%h? TrC? + 3ab(TrC?)? - TrC®}.

Here on has a,y=a 4,ay*, Byx = BAMBN , and C,y
_amﬁN s with

/01y . /o1
“““(—1 o)’ 'B‘b<-1 o>'
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Class IIs,
P=Q=0, R=x(ayay)?6,5,)° S=T=0, (20)
where ay=0a4y8*; class Ds,
P=Q=0, ) (21)
R =5(@ 48*p " v, 7y O40x)*, S=T=0;
class Ills,
P=Q=R=S=T=0.

For classes Ns and 0 all invariants vanish.
Part of this work was done while the author
was a guest at the International Center for Theo-

retical Physics, Trieste. The author is indebted
to Abdus Salam for his kind hospitality, and to
him and other members of the Center for valua-
ble conversations on gauge fields.
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We observe a resonance in the total cross section for hadron production in e*e¢” anni-
hilation at a mass of 3772+ 6 MeV/c? having a total width of 28 + 5 MeV/c? and a partial

width to electron pairs of 37090 eV/c?,

Previously, detailed studies of the total cross
section for hadron production (¢,) by e*e”™ annihi-
lation have concentrated on center-of-mass ener-
gies (E,,) above 3.9 GeV.""® In this Letter we
report high-statistics measurements of o, be-
tween the §(3684) (=¢’) and 3.9 GeV. We observe
a resonance near 3.77 GeV, just above the thresh-
old for the production of charmed particles.

The data were collected with the Stanford Line-
ar Accelerator Center—Lawrence Berkeley Labo-
ratory magnetic detector at SPEAR.*® In order
to maintain consistency with previous measure-
ments, the event-selection criteria and experi-
mental corrections are substantially the same as
those used in Ref. 1. Hadronic events are selec-
ted as events with two or more detected charged
tracks which form a vertex within a cylindrically
shaped fiducial volume 22 ¢cm long and 4 cm in
radius, centered about the interaction region. If
only two oppositely charged particles are detert-
ed, they are required to be acoplanar with the
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incident beams by at least 20°, each to have a
momentum greater than 300 MeV/c, and to have
at least one particle not identified as an electron.
Cosmic rays are rejected by time-of-flight meas-
urements. Backgrounds from beam-gas interac-
tions (~2%) are subtracted using events detected
beyond the ends of the fiducial cylinder. A small
correction (<1%) is also made for contamination
from two-photon processes.”™ The luminosity is
determined from measurements of large-angle
e*e” scattering in the magnetic detector.®”

To correct for the efficiency of the apparatus
to detect hadronic events (¢), we used the same
smooth function of energy which was used in Ref.
1. It is based on an unfolding procedure in which
the produced-charged-particle multiplicity dis-
tribution is deduced from the observed distribu-
tion and on Monte Carlo calculations which deter-
mine the detector response to each produced mul-
tiplicity.”® The use of a smooth function for € is
justified only if the observed mean multiplicity



