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91 (1930), [Their data are also given in L. J. Kieffer,
At. Data 2, 293 (1971).]
' The results of Gianturco and Thompson (Ref. 3) give

values for O.
e& that are apparently somewhat too large

at the Bamsauer minimum. Increasing 0~~ by replac-

ing 0.2 by 1 in Eq. (5) and keeping Ojg the same gives
Vz = 7x 106 cm/sec at E/p =1 eV/cm Torr.
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It is shown that the collisional detrapping of magnetically trapped electrons in toka-
maks can excite drift tearing modes with high azimuthal mode numbers. For normal
temperature gradients (d In';/din n & 0), the modes are unstable in the collisional re-
gime (pef f &co-,), but stable in the collisionless regime (p~f f &(d.,).

The parameters of present and future genera-
tions of tokamaks lie in the trapped-electron re-
gime, in which the trapped-electron bounce fre-
quency exceeds the effective collision frequency.
Electrostatic microinstabilities of the drift-wave
type (in particular, trapped-electron modes'),
which are driven unstable by the expansion free
energy associated with the density and tempera-
ture gradients, have been studied in some detail,
because of their possible contribution to the anom-
alous cross -field transport processes. In this
Letter, we show that the same free energy can
also drive a tearing' or, more precisely, a drift-
modified tearing instability. ' In contrast to the
finite-P modified trapped-electron instability,
these modes connect to long-wavelength magneto-
hydrodynamic (MHD) perturbations, rather than
propagating sound waves, away from the mode
rational surfaces. This new instability, which
we call the dissipative trapped-electron drift
tearing mode, will cause the formation of mag-
netic islands. In this way, the new instability
could have a significant effect on cross-field
transport, by mechanism different from those
involving only electxostati c trapped-electron
modes.

The wave equation for this mode is derived fol-
lowing fairly standard procedures. ' For toka-
maks with p-=8'/B' ~ e/q' « I, the compression-
al Alfvdn wave can be ignored, and the perturbed
magnetic vector potential is given by A=A ~~8/B.
Here, e = r/R, and q= rBr/RB~ is the safety fac-
tor. The other perturbation-field quantity is the

electric potential y. We then have E = —Vq —BA/
est and 5= V &&A.

The perturbed electron distribution function is
determined by the drift kinetic equation:
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In Eq. (4), and in the following analysis, we ne-
glect terms of order ~~/&u; we keep ~~ only in
denominators such as the one in Eq. (4), where
it can give rise to resonance contributions, es-
pecia11y at small v, . For untrapped electrons,
we obtain

Here to„r =~„,[1-ri,(~ -V')], v =v/vz, „vr, = (2T, /
~,)"', rl, =d lnT, /d Inn, re~ is the electron dia-
magnetic drift, and ~~ is the combined electron
VE and curvature drift. For the collision opera-
tor C, we assume a number-conserving, velocity-
dependent Krook model; in this model, number
conservation is satisfied by including in the equa-
tion for the untrapped electrons a Maxwellian
source term equal to the number of electrons
scattered out of the trapped region. For trapped
electrons, Eq. (2) then gives
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Here ((d D) = e&d ~P' = [()z&V' is the bounce-averaged
VS- and curvature-drift frequency of the trapped
electrons, and ]/, (e) = ]/, [f/v'. In deriving Eqs.
(3)-(5), we have employed the model collision op-
erators Ch, '= —[/, (e)h, ' and Ch,"=f, o J,v, (v)h, 'd'v/
no[1 —(2e)'/2]. In addition, we have made no dis-
tinction between y and A,

~,
and their bounce-aver-

aged values; i.e., we have neglected the varia-
tion of y and A,

~
along the field lines.

For the ions, we may neglect trapping and col-
lisional effects. In the small-Larmor-radius lim-
it, we obtain

n„e "M~ COg

T~ I CO QP j +X

Here 7=V'. /r, , e,=(7', /n:, )"', p, =v, /a, , and

2 ~ g (dA))
(7)

where

we have ignored ion temperature gradients and
ion curvature drifts. %e have also assumed that
IB'y/Bx'l»k, 'y (slab geometry), as is appropri-
ate for tearing modes for which the electrostatic
part of the perturbation is confined to a narrow
"singular layer. "

From f, and f,, we obtain density and current
perturbations to be substituted into the quasineu-
trality condition and Ampere's law, which then
yield

F(g) =[1- (Rt)'~ +(Z(()-(Z((~)] ((- ")(1mB,)- ' " B — * $[Q(()-Q($,)]. (()

Here, ( = ~/~ k ((~l)r„(,= ]/(2e)'/', Z j.s the usual plasma dispersion function, Q (() = $ + (g' —a)~ (g), »d
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E is a function of x, the distance from the singu-
lar surface, and this function is given by setting
k

~~
k

~~
x we assume that this dependence on k,

~

provides the only significant x dependence of E.
In deriving Eq. (8), we have noted that the paral-
lel current is carried almost entirely by the un-
trapped electrons. The influence of the trapped-
electron dynamics enters through the collisional
trapping and detrapping effects, which are pro-
portional to v, ff.

For tearing modes, we may assume that the ra-
dial component of the magnetic-field perturbation
(in our case, A(() is approximately constant within
a narrow singular layer around x=0. With this
approximation, the first step is to solve Eq. (7)
for the electrostatic perturbation y within the
singular layer.

In the case of the drift tearing mode, there are
takeo singular layers. ' In the oute~ singular layer,
we may assume that Ixl » ~/ Ik „' Iv r, . Denoting
the solution in this outer singular layer by pp,
Eq. (7) may be written

~ %o (11)
C

11

where I'=F(~)/[p, (1+co„/7~)), with F(~) = [1
—(2e)"'][(1-(d, /(o)(l+B, ) —[7,((u, /(u)B, ]. The so-
lution of Eq. (11) that properly connects to the ex-
ternal MHD solution, i.e. , that has (/, o-(dA((/

I
ckt~ x as x-~, ss given by

~ ~
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As x-0, this solution has the asymptotic form
()()o ((dA ))

I /ck)(')x ln I
I""'x

I . The outer singular
layer has a width given by the typical scale of the
solution yo, namely x-x~- II'I "'. In order of
magnitude, we have lql- I()A„/ck„'xoI through-
out this region; physically, this is the region
within which the parallel electric field is signifi-
cant.

There is also, however, an inner singular lay-
er, in which Ixl-(d/Ik(('Ivr, . Inthis region, we
have I apl (( 1(dA )(/ck ((

'x I, so that we may drop the
term in cp on the right-hand side of Eq. (7). The
resulting equation will have a unique solution,
which we denote by y„ that properly connects to
the solution in the outer singular layer, i.e., that
has p, ——(~A((I'/ck„')xln I I'"xI as x- ~. How-
ever, the detailed form of this solution is not
needed. The inner singular layer has a width giv-
en by x-x, —~/lk(('Ivr„' physically the electrons
can be readily accelerated by the parallel elec-
tric field only if u ~ k~~v~„so that most of the
perturbed current lies within this inner region.

The dispersion relation can now be obtained in
the usual way, by equating [BA((/Bx]/A(( to the
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We substitute for F(x) from Eq. (9). The integral
on the right-hand side in Eq. (13) can easily be
evaluated analytically, by contour integration
over x, leading to the following dispersion rela-
tion:

(~ —(g )(1+B )-ri (o ( +B ) =1 (14)

where yr=b'Ik~, 'Iv„'p, /w"'vr, is the growth rate
of the usual "collisionless" tearing mode. '

To estimate the importance of the trapped-
electron terms in Eq. (14) we must compare the
magnitudes of or~ and yr. We find that yr/~„
= (2b. 'r„/w'"p, )(p, /L, )(m, /m, )'" where p,
=8wnT, /B', and L, is the shear length. Typical
tokamaks have p, /L, -2X10 4 and p, -10 '; for
these parameters, we find yr/ur„- 5&& 10 '(&'r„)
Since' b, 'r„s 10, we have yr/+ s 5&& 10 2. It
follows that the term on the right-hand side in
Eq. (14) can be treated as a small correction, so
that the dispersion relation becomes

1+~ 1+2B2+ rT2

2 1+B~ 1+Br 1 —2e '

in the limit w«v, &f, we find
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giving

u& = a&„(1+0.5q, [1—(2e)"']J,

2 2c11/2.= "'. "-""-"-[2 (2 )"].

(15)

(16)

Thus, for g, &0, the trapped-electron effects are

quantity 6' obtained from the external MHD solu-
tions. Here, the brackets denote the jump across
the singular layer. The quantity 6' depends on
the detailed form of the radial current profile';
for our present purposes, we may simply regard
it as a known quantity. The jump [BA ~~/ex] is ob-
tained by integrating Eq. (8) over the entire singu-
lar layer. However, it is clear from the x depen-
dence of the right-hand side of Eq. (8) that the
dominant contribution to the integral comes from
the inner singular layer. As we have noted above,
we have I y I« l&uA~~/ckp'xI in this region, so that
the term in cp may be dropped from the right-
hand side of Eq. (8). Thus, we obtain

destabilizing in the more collisional regime. On
the other hand, for (d» v, &f, we find

giving

veff
B,= ——,'B„(18)
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Thus, for g, &0, the trapped-electron effects are
stabilizing in the less collisional regime. We
might also note that, in contrast to the electro-
static trapped-electron modes, the VB-drift reso-
nances do not play a major role here; at most,
they cause a small modification of the real part
of the frequency.

The destabilizing contribution in the more col-
lisional regime arises from the term B2, while
B, contributes a small stabilizing term. In the
less collisional regime, both B, and B, are sta-
bilizing. More precisely, we find that ImB, has
a broad peak at +/v, «—-0.1 and vanishes at &u/v, ff
=0.8. Thus, the largest growth rate occurs at
+/t/,

&&
—-0.1, and modes with &u/v, ff &0.8 are sta-

ble. The assumption that ~ & v, then limits the
unstable spectrum to 0.8 ~ ~/v, &&

& e. Moreover,
the asymptotic experssions given in Eqs. (16) and
(1V) are approximately valid for &u/v, &&&0.1. It
may be noted that the destabilizing mechanism in-
troduced by the trapped electrons does not depend
on 6'; thus, the trapped-electron tearing modes
can be unstable even if A &0. Qualitatively simi-
lar destabilization mechanisms are also found to
exist in the collisional (Pfirsch-Schluter) re-
gime. '"

Finally, we must confirm the validity of our as-
sumptions regarding the inner and outer singular
layers, and of the "constant-All" approximation.
In the more collisional regime where the insta-
bilities occur, the width of the outer singular lay-
er is given by xo-p, [(1+&v /7e)/E(~)P"-p, (1
+ 2(1+ T,/T, )/g, [1 —(2e)' '] P' . For T, ~T, and

g, -1, this is somewhat larger than p,-, so that
the small-Larmor-radius approximation is justi-
fied for the ions. The width of the inner singular
layer is given by x,- u/ I k

~~

'I v r, -{1+0.5q, [ 1
—(2e)' ]}/(2L, / )r( m/ )m' p,/. Thus, for ri, =1,
the condition xo &x/ becomes r„/L, & (m, /m&)'/',
a condition that is usually satisfied in tokamaks.
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[However, for typical parameters (q, =l, L, /~„
=15, e--,', and T, /T, =2) we find that x, ~p, , so
that the small-Larmor -radius approximation
may not be valid for the inner singular layer. On
the other hand, we did not find it necessary to
calculate the detailed solution for y in the inner
singular layer, so that our general conclusion
would be unaltered if this region were handled
with a finite-Larmor-radius treatment. ] The

constant +
t~

approximation requires that x,
& Iu&(1+&v~/std)"'/k, (v„~. Substituting for to from
Eq. (18), this condition becomes

[1-(2e)~']t),(1+0.5',[1—(2e)"']] L,

This condition does not present a very severe
limitation on the validity of our analysis; for g,
=1, e=-,', and L, /r„15, -it only limits us to p,
less than about 4%.

One of the more interesting conclusions to be
drawn from our analysis is that trapped-electron
drift tearing modes can arise with high azimuthal
mode numbers. This is in contrast to magnetical-
ly driven tearing modes, which are usually stable
(i.e., b, ' &0) for aximuthal mode numbers m& 3.
For high rn, the external MHD solutions must de-
cay away from the singular surface at z, as
exp(-mls r, I/r-, ). Accordingly, for these
modes, we have b. '= —2m/r, . The trapped-elec-
tron drift tearing modes for these high m values
will be unstable provided the trapped-electron
contribution to the growth rate exceeds the (sta-
bilizing) contribution yr. For ~/v, &f

~0.1, we
can use the expression given in Eq. (17) for the
trapped-electron contribution to y and, in this
case, the instability condition is independent of
m'. For q, =1 and e = ,', it can be —written p,
&0.3(r„'/qrL, )v,~, where v,„=v,ff(qR/e vr ).
For typical device parameters (L, /r„-15) this
condition becomes p, &1.3x 10 'v,„, which is gen-

erally satisfied in tokamaks with relatively col-
lisionless plasma parameters. For 0.1 ~ ~/v, «
~ 0.8, the trapped-electron term is still destabil-
izing, although its contribution to y is smaller
than that given in Eq. (17). However, if p,
» 0.3(x„'/qRL, ) v,~, as is usually the case, the
stabilizing contribution y ~ is relatively very
small compared with the trapped-electron contri-
bution to y, with the result that instability will
still occur over much of the range 0.1 ~ &u/v, f&

~0.8.
Ne conclude that trapped-electron drift tearing

modes should be unstable for quite high m values,
up to a limit given roughly by m~0. 8v, ff for our
typical parameters, this becomes k,p, ~ p,~.
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