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The evolution of a single tearing mode is investigated. The "collisionless" and "col-
lisional" tearing modes nonlinearly evolve into the "semicollisional" regime where the
dynamics of the "singular layer" are dominated by electron diffusion along the perturbed
magnetic surfaces. The "semicollisional" mode grows algebraically in the nonlinear
phase as in the "collisional" calculation of Rutherford.

Tearing instabilities are believed to have an
important role in both the overall stability and

energy confinement of tokamak discharges. The
m =2 tearing mode (where m is the poloidal mode
number) is experimentally found' to precede the
"disruptive instability", although the role of this
mode in the disruption is still unknown. Higher-
order tearing modes, though smaller in ampli-
tude, may break up the magnetic surfaces in
tokamaks, resulting in enhanced particle and en-
ergy transport. ' It is important, therefore, to
develop an understanding of the nonlinear evolu-
tion of these instabilities. Previous nonlinear
theories have been largely based on the collision-
al magnetohydrodynamics (MHD) equations. We
have recently shown, ~ however, that the usual lin-
ear stability analysis which results from these
equations' is not adequate to describe present
high-temperature discharges. Evidently, the non-
linear treatment of these instabilities" must be
modified accordingly.

For simplicity, we consider a model in which a
current slab J„ofwidth a in the x direction and
uniform in the y-z plane flows along an external-
ly produced 8„field. A self-consistent field
B»(X) is produced which is given by B»(x) =B„x/
I, near x = 0, with I, =B„(BB»/Bx) ' the shear
length of the field. Density and temperature gra-
dients are neglected. The magnetic energy in the
field B„drives the tearing instability and, for a
wave number k in the y direction, produces the

magnetic islands shown in Fig. IL. The magnetic
perturbations are represented by B=VX A. g„
where A, is the vector potential. The magnetic
energy released is dissipated by an induced elec-
tric field 8,= —c '8A, /St which accelerates elec-
trons in a narrow region lxl & a«a, where k 8,
=0 ("singular layer" ). The current J, is filament-
ed along the y direction by this induced field so

FIG. 1. The variation of E~~ with y and the magnetic-
field configuration around the tearing layer are shown.
We assume 8,» )BJ~, )B„).
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as to produce self-consistently the magnetic-field
per turbations shown.

We first briefly review the linear theory+' of
this instability. Outside the region of particle ac-
celeration, the ideal MHD equations are valid
and 8/sx -a '-k. In the region of particle accel-
eration, &/&x»a and A, satisfies the equation

s'A /sx'=-4 J,/c, (1)

where J, is the electron response to E™,. J, is
localized to the region x&6, so 8A, /ex suffers a
discontinuity across the layer given roughly by

[sA./sx] -=a'A, (0) = —(4~/c)fd x J,g) (2a)

= —4mJ,(0)a/c. (2b)

—vA z/k 2~ y 2/s vila (4a)

(4b)

The discussion of the collisionless and semicolli-
sional modes should be contrasted with the "colli-
sional" instability where the electrons "short out"
E, before the Doppler effects are important.

We now consider the nonlinear evolution of a
single tearing mode —a model which is represen-
tative of the tokamak discharge whenever the ra-
tional surfaces where k B,=O are spatially sepa-

The discontinuity in SA,/ex, represented by b, ',
must match a corresponding discontinuity in the
outer solutions and hence 4' is independent of the
dynamics of the layer. 6 '- a ' has been calculat-
ed previously in both slab' and cylindrical' geom-
etries.

In the "collisionless" and "semicollisional"
tearing instabilities 6 is limited by electron ther-
mal motion along 8,. The electron thermal mo-
tion coupled with finite k~~=kx/I, causes the elec-
trons to experience a Doppler frequency or~.

When ~„ is greater than the growth rate y, the
electrons receive an ac, rather than a dc, accel-
eration and J, is small. 5, is then roughly de-
fined by co„=y. In the collisionless regime y» v,
so v~ =k~~v, and 6 = yl, /kv„where v =qn, e'/m, q
is the Spitzer-Harm resistivity, and ~, is the elec-
tron thermal velocity. Since J', = -k, 'cA, /4m in
the collisionless limit, k, = c/co~, being the skin
depth, (2b) gives the growth rate and tearing
width,

y, = t 'kv, /k, 'l„~,= ~'/k, '.
In the "semicollisional" tearing instability y «v,
so the electrons diffuse along B, and ~, =k~~'v, '/V.
Since Z, =-k,'cA, y/tv, (2b) yields

rated. The harmonics are assumed to be heavily
damped and hence negligible. ' Under the assump-
tion

that&a�«a,
where zv is the half-width of the

magnetic island, then (1) I J', I « I J„l, which im-
plies B,~B», and (2) electron heating in the lay-
er can be neglected. For this model,

A, (x,y, t) = -8„x'/21, +A, cos(ky), (&)

where A, is essentially constant across the layer.
Note that this model is not appropriate for the
m =1 mode in tokamak applications, where the
"constant-(" approximation is invalid. A, is
constant along a field line, so

co = 2(A, I,/B.,)"'.
The linear theory is va3.id as long as the magnet-
ic-field perturbations within the region of particle
acceleration are small, i.e., sv «h. When zv ~A~
(where A~ is the linear layer width), the electron
orbits are strongly altered by the new magnetic-
field configuration, the electrons within the sepa-
ratrix being constrained to move around the is-
lands. For m»h~, the electrons within the sepa-
ratrix still experience a nonzero time-averaged
electric field (E,), as can be seen in Fig. 1. (E,),
&0 for the electrons near the center of the island,
while (E,), &0 for electrons closer to the separa-
trix. Nonlinearly, we therefore expect 4 =m
since (E,), = 0 for electrons well outside the sepa-
ratrix where the magnetic-field lines are only
weakly distorted.

More quantitatively, we write the guiding-cen-
ter equation for electrons with a model pitch-an-
gle scattering operator as follows:

[s/st+ vins/» --'v(s/s&)(1- (')(s/s ])]f
= 2',

~
v

~~ f,/mv. ', (7)

where "II" refers to the component of a vector
along B, f = v ~~/v, and f, has been approximated
as a Maxwellian distribution. With neglect of col-
lisions, (7) is easily inverted and J, is then cal-
culated as follows:

J,= (c/4v) 'kfd'v f,(2v ii'/v, ')

x f „dv. cos(ky)&A, /ax

= (c/4~)k, 2A, f d~ cos[ky(~)]/r,

where the second equality is valid when y(t)T «1,
T being the period of the electron motion along
B and y(t) =8 lnA, /St being the local growth rate;
y (t) is the y coordinate of the particle as a func-
tion of time. Since J, in (8) is essentially given
by the time-averaged electric field seen by the

454
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electrons, it is constant along a given fieM line.
8(t) =ky (t) satisfies the equation

d'8/dt'+ w, ' sin8 = 0,

where ~, =kegm/2/, is the "bounce" frequency of
the "deeply trapped" electrons. The boundary
condition d 8/dt = 2&v„x/m at 8 = 0 specifies the
field line occupied by the electron. The present
investigation is evidently very similar to O'Meal's
calculation' of the damping of a large-amplitude
wave, our x-y phase space being ana1ogous to the
~,-z phase space in his work. We project out the
0 component of J, and combine this result with
(2a) to obtain

co =6 /2k0 G
q

where

G = fdx J, d8 cos8J0 dt cos [8(t)]/2mTso.

6 is a constant which can be expressed as an in-
tegral over complete elliptic functions. Numeri-
cal evolution of this integral yields G = 0.410. In
the collisionless limit, the magnetic island satur-
ates when su=A„, the bnear tearing width. Note,
however, that this result is somewhat artificial
since the collisionless approximation breaks down
when y & v. The coQisionless tearing mode then
evolves into the semicollisional regime.

When y & v, f is still constant along a given
field l.ine as long as the electrons complete many
orbits around the magnetic island during a time
y '. This can be shown" in various limits by di-
rectly inverting the operator on the left-hand side
of (7). We can therefore average (7) over a field
line, eliminating the operator u~~ 8/Bs. Solving the
resulting equation for f and calculating Z„we
find

Z, = (c/4m)k, '(v 'BA,/St)J, ds cos[ky(s)]/S, (12)

where 8 is the length of one period of the field
line. For (12) to be correct, we require (Ss')"'
»S, where (Ss')"'=u, (yv)"' is the average dis-
tance an electron diffuses during a time y '. The
average of cos(ky) over the field line physically
corresponds to time-average field experienced
by the electron, which is identical to the time
average in (8) as long as the inequality is satis-
fied. Equation (12) is then identical to (8) except
for the operator v '&/Bt, so from (10)

y(t) = va'/2k, 'Gee(t) =y„a „/w(t).

A comparison of this result with (4) clearly indi-
cates that the tearing width becomes the magnet-

ic island width in the nonlinear regime. From
(6), dm/dt =6'c'/16G, so the magnetic island
grows algebraically in the nonlinear stage. This
result is similar to that of Rutherford' in the
collisional tearing mode, although the physical
mechanisms are quite different. From the ex-
pression for w„S= t, /ken for deeply trapped par-
ticles. The inequality (b.s')"'»S then simply re-
duces to

K &&6 SC. (14)

This inequality, along with the restriction se «a,
defines the range of validity of (13).

The growth rate in (13) has a simple physical
interpretation in terms of the energetics of the
tearing mode. From linear theory the rate of
magnetic energy release per unit area in the y-z
plane is given by yb. 'A, '/4m. " This energy is dis-
sipated by Joule heating in the tearing layer,
b,J,E,=b,y'k, '/4m. As b, increases with m in the
nonlinear phase, the growth rate of the instability
must decrease so that the released magnetic en-
ergy can heat the larger number of electrons in
the tearing layer.

That the semicollisional tearing mode does not
saturate within the present model is not really
surprising. Since E,= 0 at saturation, 4,=0 in
the central layer. This result is only self-con-
sistent if B=O, so the semicollisional tearing
mode must continue to evolve. In the collision-
less limit, on the other hand, J, remains finite
even when E,=O and saturation can therefore oc-
cur. The inclusion of finite tv/a corrections,
which has been shown by White et al.' to saturate
the coQisionat. tearing mode, will be considered
in a separate publication.

We have found that the collisionless tearing
mode nonlinearly evolves into the semicollisional
regime. In the long-mean- free-path conditions
of present tokamak discharges, 6, „"-p;, the ion
Larmor radius. ~ The inequality in (14) describ-
ing the validity of the semicollisional theory
therefore implies that the collisional tearing
mode also evolves into the semicollisional re-
gime. The dynamics of the "singular layer" in
present discharges is therefore dominated by
electron diffusion along the perturbed magnetic
surfaces.
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We propose a kinetic theory for e1ectron-drift-velocity maxima in polyatomic gases,
The case of methane is considered in detail, and good agreement with experiment is ob-
tained with use of model cross sections. The Boltzm~~~ equation is solved directly by
app1ying an iterative numerical technique, which converges well when inelastic scatter-
ing effects are important.

We consider the drift velocity V„(average ve-
locity) of a swarm of electrons in a steady deter-
mined by the action of a uniform electric field E
and scattering from the molecules of a gas. For
several polyatomic gases, V, exhibits a maxi-
mum as a function of E.' It has been clear for
a long time that inelastic scattering including a
vibrational transition is involved (Cottrell and
Walker' ). However, no satisfactory kinetic theo-
ry has been presented to explain this feature. In
this Letter, we give a general theory for it. We
consider methane in particular, since it has been
extensively studied from both an experimental
and theoretical viewpoint' and its behavior is typ-
ical of several nonpolar polyatomic gases (e.g.,
CD4, SiH„SiD4, C,H4, C,H, ). We propose that
the velocity maximum is due to a strong "stream-
ing" anisotropy in the electron velocity distribu-
tion f(V). This results from the combined effects
of elastic and inelastic scattering near the Ram-
sauer minimum in a way not previously under-
stood in gas kinetic theory. To check our model
quantitatively, we solve the appropriate Boltz-
mann equation for f(V) for model scattering cross
sections appropriate to methane. This is done by
applying an iterative numerical technique origi-
nally developed by Rees' for what is essentially
the same transport problem in semiconductors.

The iterative technique is numerically exact
and converges well when f(V) is anisotropic. Pre-
vious calculations of f(V) in similar circumstanc-
es are all based on equations appropriate when
anisotropy is small (see Huxley and Crompton'
for a review of this work and references). Ap-
parently the general condition for this is that the
total inelastic cross section be much smaller
than the total elastic cross section. ' In the pres-
ent model, this is not the case for most energies
of interest [see Eq. (5)]. A strong anisotropy is
also consistent with Cottrell and Walker's' dem-
onstration that V„ is of the order of the rms elec-
tron speed for the fields considered here. Anoth-
er consequence is that the elastic energy loss
(and, in this context, the elastic momentum-trans-
fer cross section) plays almost no role since it is
far smaller than the inelastic energy loss. (The
direction-changing effects of elastic scattering
are crucial, however; see below. ) Setting m/M
=0 in Eq. (2) at a typical value for E in the cal-
culation described below affected only the fourth
significant digit in f(V).

It is worth emphasizing that the iterative tech-
nique' is very general and widely applicable to
the problem of calculating f(V) in similar elec-
tron- or ion-transport problems from given
cross sections. It should prove especially useful


