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Scale-Covariant Theory of Gravitation and Astrophysical Applications
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We present generalized Einstein equations, invariant under scale transformations, and
study several astrophysical tests. It is assumed that the dynamics of atoms or clocks
used as measuring apparatus is given a pyioyj. Connection with gauge fields and broken
symmetries is made through the cosmological constant.

A physical theory can be considered complete
only when it provides the system of units to be
used. Examples of -complete but unrelated theo-
ries are quantum electrodynamics (QED) and
gravitation, which define two separate systems
of units: one purely atomic, i.e., made of e, m,
and h, and the other purely gravitational, made
of 6, M, and 8, where M and R are masses and
radii of astronomical bodies.

If the two theories could be unified into one sin-
gle scheme, then a new system of units would
emerge, which need not coincide with either of
the two previous ones. Insofar as such a theory
does not yet exist, it is logically consistent to
consider that today's ratio of electromagnetic to
gravitational units has not been the same through-
out the evolution of the Universe. We shall there-
fore consider that e'/Gm, m~, which today amounts
to 2x10", can be in general written as p '(x).
The normal practice so far has been that of pos-
tulating that p(x) is independent of space and
time, i.e., 10"has been so during the entire
evolution of the Universe, a built-in disparity
that defies by fiat any attempts to unify the var-
ious types of interactions. However, the recent

success of gauge fields with broken symmetries'
can be taken to support the position that any a
priori assumption about the strength of different
forces is unjustifiable. In the spirit of gauge
fields with phase transitions, ' we shall consider
that the disparity in strength between atomic and
gravitational forces is not a fundamental or in-
trinsic property of the physical world, but rather
is the result of one making measurements when
the Universe is 20&10' years old and permeated
by a 3-K temperature. ' Within the framework of
gauge fields, the high-temperature, high-density
scenario that prevailed in the early Universe
assured the equality of e'/hc, GF, g /4m, etc.
The symmetry was broken by the expansion of
the Universe, that cooled the temperature below
10"K at a time t=10 "sec. Since that moment
till today, the fundamental interactions have
looked "different" from one another both in
strength as well as range. In this Letter we will
consider a somewhat related concept but we shall
concentrate exclusively on gravitation. We shall
not postulate a phase transition, but rather a
smooth change taking place throughout the entire
history of the Universe. The guiding principle
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is, however, the same: In the early phases of
the Universe, gravity was as strong (or as weak)
and of the same range as any other type of inter-
action. However, since any variation of G is
strictly forbidden within the framework of Ein-
stein equations, in order to implement the idea,
we shall resort to two different sets of units,
since, as we said, there is no a priori reason for
electromagnetic and gravitational units to be con-
stant multiples of each other. Following Dirac, 4

we shall assume that atomic units are such that
e, h, and m are constant with respect to atomic
time, and that Einstein units are defined so that
G, M, and A are constant with respect to gravi-
tational time. Einstein equations with G constant
are understood to be valid only in Einstein units,
i.e. , with respect to clocks set up by astronomi-
cal systems whose dynamics are solely deter-
mined by gravity. However, G can vary with re-
spect to atomic units as much as e, h, and m can
vary with respect to Einstein units. In practice,
since our measuring apparatus are made of atoms,
Einstein units are of limited use. If we call ds'
=g&„dx "dx' the line element in Einstein units, the
corresponding line element in any other units (in
particular atomic) will be written as ds =P '(x)ds.

Our first task, that of writing Einstein equa-
tions in a scale-independent way, is achieved by
performing the above conformal or scale trans-
formation on Einstein equations. Qnce the gen-
eralized dynamic equations are derived, a wide
range of phenomena will be analyzed and it will
be found that no contradiction exists so far with
any mell-established fact.

(1) Einstein equations. Aconfor—mal transfor-
mation, of the type just mentioned, transforms
the usual Einstein equations into'

R„„--,' g„.R+f„.(P)

8G(P)~„.(-P) .A(P)g„.,
where

P'f„.(P) = 2PP„, 4P„P.-g„-.(PP, ~ PP~). (2-)

For any scalar n, n
&

= u &. The mathematical
operations from now on should be performed us-
ing g&, . Clearly, the choice P =const reduces
Eq. (I) to the Einstein gauge with G(P) = G =const.
Since the left-hand side of Eq. (I) is scale invar-
iant, it does not change under a new scale trans-
formation ds -ds' =y(x)ds; and since we want the
entire Eq. (I) to be valid in any system of units,
the right-hand side must also be scale invariant,
and so we must have GT&„——G7'&, . By use of the

perfect-fluid approximation for gpp and the fact
that U& ——PU&, it follows that G(P)p(P) must trans-
form like P', no matter how p and G transform
separately.

(2} Geodesic equations. —Upon transforming the
geodesic equation in general relativity via ds
=Pds, one obtains the scale-covariant geodesic
equation'

"5 k =—"(&g" 5"5-")

6+(p+p)u "= p-d(GP)/dt P—3p-
GP P

1 (4)

momentum,

(p+ p)u" = (g""-u"u')

xIp„+pG /G~(p-p)P, /P]'

baryon number,

(Ilu~). „=(~(G)-I]3RP/P, 3R=mn,

where n is the baryonic number density and n(G)
is the power of G: G(P) = GP "~c~. So far n(G} is
unknown.

(5) Cosmology. —For, any equation of state of
the form p=c, 'p, Eq. (4) is exactly solvable. The
results for matter (c,'=0) and radiation (c,'= 3)
read in the R% metric

G(P)py~P '(t)R '(t), G(P)p„~P '(&)R '(&). (7)

The use of the RW metric, the energy-momentum
tensor for a perfect fluid, and Eq. (7) leads to
the following cosmological solutions (3A = 8n'Gp, ):
For k =0,

P(f)R(f)/R, = [ I - '.&"'f(i, i,)]"', -

f(i, f,) = f, 'P(i)di;

(8)

("=dk "/dh, e =g„g("(~.

For photons, e = 0; for massive particles e = 1,
and cfh. =ds ~

(3) Red shift. —Since the frequency is defined as
u&k", where u& is the comoving velocity and k" is
the photon wave vector, it is easy to derive from
Eq. (3) that the following relation holds in any
system of units: P"vR = const, where R(t) is the
expansion factor in the Robertson-Walker (RW)
metric and II = II(x„) is the power of the wave vec-
tor z& under scale transformation.

(4) Conservation laws. —Using the perfect-fluid
approximation for T&„we obtain from (I) the
following conservation laws: Energy,

430
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for k=-1,
P(t)R(t)/R, = (A/2B)( cosh' -1),
a-=ia i/R, ',

f(t, t,)=(&. /28' ')(y-sinhy+C).

Here C is obtained by putting t=t„and g=g*;
g* is then given by the first equation with p(t)R(t)
=R,. The case k =+1 is obtained by substituting

ie-
(6) The three fundamental tests.—By use of the

geodesic equation (3), it can be shown that the
formulas for the advance of perihelia and deflec-
tion of. light rays are the same as in general rela-
tivity. The scale factor P(t), however, influenc-
es the radar-echo-delay analysis, which can be
shown to yield for the maxi. mum round-trip de-
lay the following new expression:

p(at), „=(at),„'—8(M, G), 1n[ pR, (t)/R, ], (10)

where the index zero corresponds to today and

Rs =Ro'
(7) Planetary orbits. —The equations for two or-

biting planets can be analyzed with Eq. (3). The
significant result for the change of the period n
can be written in the following form,

G/G = h(n. —n, )/n,

where n, and n, are the atomic and tidal contribu-
tions, and where the constant h is —,

' for the case
M = const, P = 1, G -t ', and + 1 for the present
theory, with M-t', P-1/t, G-l/t.

(8) Cosmological constant, A.—As seen from
the previous treatment, the cosmological con-
stant in the present theory is not constant at all.
In fact it must scale like P'. It is well known"
that within the gauge fields with broken symme-
tries, a cosmological constant can be computed
with a value of 10 ' cm ', whereas it is known
that its value today cannot exceed 10 "cm '.
Since, however, 10 ' is computed at T =200 GeV,
i.e., at 10 "sec, a scaling factor P', with P
=t,/t, is needed to bring 10 ' down to 10 '0 at t
=t, -10"sec. A more formal proof will be given
at the end |see Eq. (12)].

(9) Determination of P(t).—The comparison of
the present theory with observations is dependent
upon the function P(t). Since P(t) represents the
freedom we have in choosing the system of units,
it cannot be determined from within the theory,
i.e., no dynamical equations can exist for P(t),
and external conditions must be imposed. The
connection with gauge fields and the cosmological

constant already suggest P-1/t. As an alterna-
tive possibility, we shall also adopt the Dirac
large-number hypothesis, "which states that t"
-1/t and M- t'. From the present theory we
have G(P) -P "'a' and M~ P"' ' ' [Eq. (6)]. Solv-
ing for P we obtain P - I/t, i.e., G (P) -P, M -P ',
MGp-const. We shall therefore write p=t„/t,
where I,, is the age of the Universe today.

(10) Comparison teith observations. —I et us
first analyze Eq. (11). The most recent determi-
nations" are n, = -36 ~ 5.0 sec/century', n,

= -26.0*2.0 sec/century', and n = 17.33 x10' sec/
century from timings of occultations of stars by
the moon. Since —G/G =1/t, =II, and the most
recent determinations of II, yield II, =55 +7 km
sec ' Mpc ', the left-hand side of Eq. (11) is
(5.6+0.7)x10 "yr '. If n, -n, is taken to be a
nonzero result, then the present theory with 6
-1/t, M-t', P-I/t, and h=l is favored over the
so-called primitive theory, G -1/t with M and P
being constant. In fact, using n=17.33"x10' cen-
tury ', the right-hand side of (11) is

hx(5.8+3.1)xl0 "/yr

which is in good agreement with G/G if h = 1. The
choice h =1 looks preferable over h = ~.

The three fundamental tests have already been
discussed and the fact that we obtain the same
result as in ordinary theory is most comforting,
since other theories have failed at precisely that
level.

For large cosmological times, the value of the
deceleration parameter qo turns out to be very
close to zero. This is in agreement with the
most recent d~te~mination of q, from observa-
tional data, ' Several other tests have been per-
formed by the authors as well as by others (us-
ing the present mathematical formulation) re-
garding the magnitude versus red-shift relation,
angular diameters (both isophotal and metric) for
giant elliptical galaxies, "stellar evolutionary
effects, '0 etc. All the tests performed so far
have revealed that the present theory fares with
observations either equally well as ordinary cos-
mology or slightly better.

A final important consideration is in order.
The theory just presented is entirely classical,
i.e. , it can be applied only to macroscopic ob-
jects: A corresponding theory valid for low quan-
turn numbers has yet to be constructed. A com-
parison with manifestly gauge-invariant theories
is therefore not immediate. However, an inter-
esting connection must exist. In fact, our scale
function P plays a role analogous to the Higgs
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field y, as one can see upon comparing the action

I= Jgu2d4&~ —pmR+a. p4+6p&pq+L

used to derive Eq. (1), with the usual double-
humped Higgs Lagrangian. ' The —p' term is re-
placed by the contracted Hicci tensor and the Xcp~

term by oP'. The comparison can also be made
at the level of the dynamic equations, if one con-
siders that the additional term in Eq. (1), i.e. ,
P2f&„, is just the so-called improved energy-mo-
mentum tensor for scalar particles. " Further-
more, from the work of Linde, Weinberg, and
Jackiw' ' (see also Canuto and Lee') we know that

c2=-(y)2- Z'2 A- c4- T4.

For a relativistic gas T'-t ', and so it follows
thatA™t '. Since in our theory A-p', we can con-
clude that P - 1/t.

We would like to note that the connection with

gauge fields has provided another interpretation
to the scale-invariant theory besides the one pre-
sented originally in Ref. 5. At the same time, it
has also provided the way to determine the scale
factor P (t) via the cosmological constant A. Since
A is a function of both G and microscopic con-
stants, A ' ~ can be thought of as the fundamental

length that relates microscopic physics and gravi-
tation. We believe that this analysis has contrib-
uted one step further in the understanding of grav-
itation in the light of gauge fields and broken sym-
metries.
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