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We have observed isomeric states in ' Hn with very high angular momenta (up to J~
=30 ). The four isomers of highest spin contain core-excited neutron configurations, the
spins of which are strongly aligned with those of the valence protons. The isomerism ap-
pears to result from a lowering of the excitation energies by 1 to 2 MeV compared to a
sum of the unperturbed values for the constituent configurations.

Recently, mechanisms for producing isomers
with very high spins (yrast traps) have been dis-
cussed. When such isomers exist, they are par-
ticularly useful in the study of nuclear structure
at high angular momentum. These isomers might
be caused by minima in shell-correction terms'
overcoming the steeply rising liquid-drop energy,
and may involve either triaxial or oblate equilib-
rium shapes. Additional effects would arise from
the large residual interaction between states near
the Fermi surface with maximum overlap of the
nucleonic wave functions by alignment (MQNA) of
single-particle angular momenta. ' Such isomers
are expected to be oblate.

In the present work, we have found nine iso-
meric states in ' Rn, and of those, the higher-
lying levels appear to be of MONA origin. The
experiments were carried out with the Chalk Riv-
er Model MP tandem accelerator, and the results
are summarized in Fig. 1. The five lower-lying
isomers up to 4 = 17 are accounted for' by con-
figurations of the four valence protons in "Rn,
but above 6 MeV of excitation, the most appro-
priate model to explain the isomers appears to be
coupling of valence protons to excited states of
the ' 'Pb core. Since the Pauli principle would
inhibit excitation of core protons into valence or-
bitals at spins already occupied by valence pro-
tons, it is suggested that mainly the neutr on part

of the 'Pb excited states contribute to the coup-
ling. We shall discuss the experiments leading
to the level assignments, including the magnetic-
moment measurements with which we compare
the calculated moments for our proposed config-
urations, Conclusions about core-coupled iso-
mers may be drawn from the proposed configura-
tions.

The heavy-ion reaction "4Hg("C, 5n) at E("C)
= 72-85 MeV was used to produce '"Rn at high
angular momentum. The lifetimes of the iso-
meric levels and their sequence in '".Rn were
established by standard pulsed-beam techniques. 4

The data obtained include excitation functions of
delayed and prompt y rays, time distributions of
delayed y rays, and extensive y-y coincidence
measurements. We have also determined concur-
rently angular distributions and linear polariza-
tions of delayed y rays. A Compton polarimeter
consisting of three Ge(Li) detectors similar to
the one described by Butler et a/. ' was used for
the polarization measurements. A simultaneous
fit of the angular distribution coefficients, A, and
A„and of the linear polarization, P&, uniquely
determined the angular momentum change, 6J,
the multipolarity, t, and the electric or ma. gnetic
character of each transition, as well as the mix=
ing ratio, 5, though only the 1047-keV (18 -17 )
transition was significantly mixed: &((&2)/(hf1))
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FIG. 1. Proposed ' Rn level scheme including half-
lives of isomeric states, transition multipolarities,
and g or M character from angular distributions and
polarization measurements, and observed g factors.
Energies are given in keV. The unobserved transition
g =E'„(22+) —E'„(20+) is discussed in the text. Theoreti-
cal predictions are from Ref. 3.

=1.4. This led to the level scheme and J' assign-
ments shown in Fig. 1. Note that the unobserved
transition 6 =E„(22+)-E„(20') was postula. ted be-
cause of prompt components in all the observed y

rays de-exciting the 22+ isomer (T»2= 113 ns).
The E2 assignment to this unobserved transition
is the only link which is not based on experiment-
al evidence in the sequence leading to 30' for the
uppermost isomer. It does, however, agree with
the theoretical prediction' for a 20', 22 doublet
at this energy. To corroborate further the con-
figuration assignments shown in Fig. 1 we have
measured magnetic moments of the isomeric
states using the time-differential perturbed an-
gular correlation method (TDPAC) described in
Ref. 4. The results are shown in Table I and also
in Fig. 1. Additional support for the configura-
tions comes from measured lifetimes for E2
transitions (17 - 15, 14' - 12', and 12+ - 10')
which agree within 30% with B(E2) values calcu-
lated using an effective charge of 1.8.

As may be seen in Fig. 1, the agreement of
theoretical and experimental level energies is
very good up to the J'= 22' state. Note that the

m(k», 'i»») and m(h», 'f», ) configurations for the
17 to 14' sequence recur in the proposed 22' to
19 sequence, this time coupled to the 5 state of
the ~'Pb core. ' The measured g factor for the
J'=17 state is in excellent agreement with that
calculated' for an (hg/, 'i»») proton state. The
rather small g factors measured for isomers with

. J» 22 can be explained if neutron core excitations
supply a significant fraction of the observed an-
gular momentum. If, for the J'=22' isomer, one
considers coupling with the 5 core-excited state
of ' 'Pb, the calculated g factor is 0.80, while in-
clusion of only the (P,/, 'g», ) neutron component
reduces the calculated value to 0.76. The ob-
served g factor (0.72 + 0.01) is even lower, sug-
gesting that the 22 isomer is not a simple state.

Based on the g-factor measurements, other en-

TABLE I. Core-excited isomers in Rn. The suggested configurations are
proposals that agree with observed g factors and require the smallest attractive
interaction to reach the observed Hn excitation energy. See text.

Valence
protons

Core excitation
(neutrons)

Required
attraction

(Me V)
g factor

calculated'
g factorb
observed

30 (@~/2 i,3/, )20'

27 (g~/2 i f3/2) 17

22 (hg/2 i ~3/2) 17

(g~/, ii3/, ')ll+ or
(~15/2f 5/2

') 10'
(ge/2i&3/2 ') ll' or

(4,5/2 f5/, ') 10'
(&&5/2P &/2

') 8'
(A/~Pi/~ ')5

(- 1.9)
(-2.2)

1Q 2
—1.6
—1.6

1y 1

0.65
0.72
0.57
0.64
0.68
0.76

0.657+ 0.003

0.63+ 0.03

0.71+ 0.02
0.72+ 0.01

'Ref. 6.
Corrected for Knight shift (0.05+ 0.2)% and diamagnetic shift (1.91%).
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ergetically favored configurations are suggested
in Table I for the higher-lying isomers. B(ES)
values estimated from experimental single-par-
ticle strengths' for the proposed configurations
are within 10% of the values extracted from our
data, except in the case of the 30' state, for
which estimates are a factor of 5 too low. As in-
dicated in Table I (column 8), the proposed con-
figurations have excitation energies lower by 1-2
MeV than the sum of observed level energies of
the valence protons and the unperturbed energies
of the core-excited neutrons. It should be em-
phasized that the relevant core-excited states in' 'Pb are not expected to be isomeric and that at-
traction by the MONA mechanism —in the present
cases the strongly attractive proton-neutron and
proton-neutron-hole interaction for highly aligned
orbitals'~' —is essential to produce the isomer-
ism. Isomers of similar nature, but at lower an-
gular momenta, have been found in '"Po(18'),"
~'Tl(12 ),"and ~'Bi(—", +)." One might also spec-
ulate that such isomers with J&30 exist in nuclei
with neutron number N & 126. The high-spin iso-
mers in '"Rn are expected to have an oblate de-
formation, yet should not have rotational bands
built on them —predictions that might be verified
experimentally.
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