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Theory of Electron-Phonon Enhancement of Thermoelectric Power in Metals
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The enhancement of the electron diffusion thermopower due to the electron-phonon in-
teraction is studied microscopically. I find that the thermopower is enhanced not only
by the mass enhancement but also significantly by a new mechanism independent of scat-
tering. The result is justified in terms of the Landau-Boltzmann equation.

It is well known that the effect of electron-pho-
non mass renormalization does not appear in dc
electrical conductivity. " Also, since the work
of Prange and Kadanoff, ' it has been believed that
the above effect appears neither in thermal con-
ductivity nor in the thermoelectric effect. Recent-
ly, Opsal, Thaler, and Bass' argued, using
Mott's formula, 4 that the impurity-dominated
electron diffusion thermopower is enhanced by
the electron-phonon mass renormalization. They
could explain their data' in aluminum with dilute
gallium impurities only by including the effect of
mass enhancement of 45/p. However, it is not
clear to what extent their semiclassical approach
treats the effect of electron-phonon interaction
and mass renormalization. In view of these de-
velopments, it seems necessary to resolve the
situation by making a rigorous microscopic anal-
ysis. The present theory is based on Holstein's
treatment' of electron-phonon system. I find that
the thermopower is enhanced not only by the mass
enhancement but also significantly by a new mech-
anism independent of scattering. The result is
justified in terms of the Landau-Boltzmann equa-
tion.

I study a system of Bloch electrons interacting
with the lattice and a low concentration of impuri-
ties at low temperature (T «8D, Debye tempera-
ture). One can easily generalize the result to

FIG. l. Effective electronic energy current vertex
arising from the electron-phonon interaction.

other temperature regimes. The thermopower is
given by'

Here e is the electronic charge (negative) and

The correlation function is given by

r~~(h'( „)= f &J(u)K) exp(S(u„u)du,

where the angular brackets denote the grand-ca-
nonical thermodynamic average, hen„=k ~ T27i~i,
and P' '= ABT. Here r is an integer and kB is
Boltzmann's constant. Z(u) is in the imaginary-
time Heisenberg representation. Finally, using
the Frolich Hamiltonian, ' K is given in terms of
the charge-current operator J and the electronic
energy current operator Q by

(3)+r'k (e@ +~) k'k e+k ( k i )~r', r e2(Vk' Vk )~f (~q ~-qt)~k', k+q

where e-„and v-„are the Bloch energy and Bloch velocity of an electron of wave vector k, and V-' is
the bare electron-phonon interaction strength, assumed to be a function of the momentum transfer on-
ly. p, 5k, -k, and b-„(b -„$)are, respectively, the chemical potential, the Kronecker delta, and a Bos-
on destruction (creation) operator. The temperature gradient is assumed to be in the x direction.

The correlation function in (2) is found in terms of the upper charge-current vertex correction (de-
fined as EE-vertex part following Holstein's work' ), which consists of ladders of single impurity lines
and phonon lines. The lower vertex contains not only the first term of (3) but also terms arising from
the second member of (3) and illustrated in Fig. 1. Here the curvy, solid, and incoming wiggly lines
represent, respectively, phonon propagators, full electron propagators [to be denoted as Sr(z)], and
the external line. The electron-phonon vertices (V-„)and the phonon frequency (&u-„)are dressed. '
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One then finds

2

«JE)) = —~P-„Uf„f dz( [c-„+M p(z) + m -„(z)—p] [ —f~ '(z) Jy-„(z)2m' [z —e g -M-„(z)]

+Q + (et; —p) f &(z)1, . —A-„(z+i0, z+ h~+ i0) (4)

m~(z)-~~. ~a~.&~ "ll'-, lf"(&x)5-. k. -, ~(z-&k +@~-,)

where f~ ' —= 1 -f~ ' and 6' indicates the principal part. The real part of the self-energy hI~(z) is ob-
tained by replacing vz,

„

in (5) by vk„. The distribution function yk(z) in (4) is related to the EE-ver-
tex part A~ by' yk(z) = hAk(z —i0, z+ i0)/21'-„(z) and to the (bare) transport relaxation time by yt;(z)
=v„-„7/z),where

(5)

where f~ '(z) and &u are the Fermi function and the external frequency, respectively. The prime means
a derivative with respect to the argument. The electronic self-energy part is given in terms of its
real and imaginary parts by G-„(z+ iO) = M-„(z)+ il"g(z). The self-energy-like quantity m-„(z) is defined
by

Tk(z) '= (2gN/8)Q&,
~

U-„,k ~'(1- cos8~, &)6[z —ez, -M-„,(z) J. (6)

Here U~, -„is the Pourier transform of the impurity potential, assumed to depend only on the scattering
angle g-„,~, and N is the number of impurities. The quantity BA-„/B~in (4) is given by

(B/B(u)A-„(z+iso, z+e(u+fqo) t, = (ga) 'J'" -dxLg~5 v f' ~'(x) [V~('q „-,(x)5[x —eg, -M-„,(x)J

x[(P(z —x+h(u-) ' —ziq6(z —x+h(uq)j, q =+1. (7)

Although the phonon ladders do not contribute significantly to the scattering at low temperature, they
are directly responsible for (7). Noting that yg(z) is inversely proportional to the concentration, (4)
and (7) are given to the lowest-order in the latter quantity. Another smallness parameter in the pres-
ent theory is the ratio of the sound velocity (c,) to the Fermi velocity (v F), or equivaleritly that of the
Debye energy to the Fermi energy. The two terms M~(z)+m k(z) in the parentheses of (4) arise from
the processes shown in Fig. 1, and account for additional electronic energy current arising from the
electron-phonon interaction. Although these quantities are small (i.e., of order of Debye energy), they
vary rapidly over the range of the Debye energy [e.g. , BM~(z)/Bz -1]and lead to an important contribu-
tion. The term proportional to BA&/B&a in (4) is apparently of higher order in electron-phonon interac-
tion in view of (7). It is known' that the contribution from terms of this type of EE part is negligible
for the charge conduction. However, in the present problem, the quantity BA~/B &u leads to a significant
contribution. It turns out that the term proportional to mgz) in (4) cancels part of the above-mentioned
contribution arising from BA~/Bv. One then finds to the lowest order in the smallness parameters

«&A)) = '(~eI T)'-& y~g.'1[1—Mg'. (u)](B/BV) [Tt;"'(u)6(u —&g) J ~g"(u) Tq—"'(u)5(V ~~))

In (8), the "bare" relaxation time r-„~'~(z) is defined via (6) by dropping Mt;, (z) in the 6 function, and
use has been made of the relations

and

(B/Bv) [~g(I )6(u ~g-Mp(v) ]=[1 Mg'(u) J(B/-Bu) I7'r"'(I )6(I . ~;)J

Assuming —M-„'(p) (-=a) to be isotropic at the Fermi surface, and using

«ZZ)) = e',~~~ v p„'~g~"(y)5(p, —c-„)=- e'c &"(p),

one finds finally from (1) and (8)

'=(I+.)8&"+ ( '&, 'T/3 ) [- (10)
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where the "bare" thermoelectric power g ' is given by

8~" = (m'h s'T/3e)(9/9 p) in@~"(p).

Note that only unrenormalized quantities enter (9) and (11). The first term of (10) corresponds to the
enhancement through mass renormalization and arises from the first term of the curly brackets of (4)
apart from the m-„(z) term. This term was obtained by Opsal and co-workers' semiclassically. The
second term of (10) represents a new effect, whose noble physical origin will be discussed shortly.
To make an order-of-magnitude estimate, one finds, using effective-mass and Debye approximations

—m-„,"(p) = x/2p. (12)

Comparing (12) with (10) and (11), it is seen that the second term of (10) constitutes a significant frac-
tion of the thermopower. Although the bare relaxation time 7 l has been defined earlier by (6) for sim-
plicity, 7~ ' in (9) and (11) should be understood as a generalized relaxation time; for example, it con-
tains the effects of virtual recoil by impurities discussed by Nielsen and Taylor, and the electron-
phonon vertex correction to the impurity scattering discussed by Hasegawa. This is achieved by modi-
fying the irreducible scattering part accordingly.

Now, I justify (10), using the Landau-Boltzmann equation. ' The latter leads to, ' assuming cubic sym-
metry for simplicity,

(13)

The integral in (13) is over the Fermi surface, and the renormalized relaxation time is given by'
wk~"l(p) = (I+y)~»~"(p). The quasiparticle energy and velocity are defined, respectively, by E»= e»
+M»(Ek) and

f~) 1 vt,v-" = —V-E»= + —V»M-(z) i
= E-.

L+X 1+X 8 (14)

The second term of (14) is of order c, /v„smaller than the first term and is insignificant for the elec-
tric conductivity. However, it varies very rapidly in energy and gives a significant contribution to
(13). Using (14) in (13), one finds'

g k T I 8
8 = (1+X)6"'+ —" — M-„„'(z)

Av~ 9' F
(15)

the second term arising from that of (14). In (15) I have used Mk "(p) -c, /vFp=0. When the electron-
phonon matrix element is assumed to depend only on the momentum transfer, (15) reduces to (10). The
former should be regarded as a more general result Final. ly, the second term of (15) affects neither"
the difference of the high-field and zero-field adiabatic magneto-thermopower, ' g(H) —g(0), nor the
high-field adiabatic Nernst-Ettingshausen effect." This means that this term would not be observed in
recent experimental investigations of mass enhancement in thermoelectricity. '" A more detailed ac-
count of this work will be published elsewhere.
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ERRATA

HEAVY-ION-INDUCED DEFECT PRODUCTION
AT LO% TEMPERATURE IN SUPERCQNDUCT-
ING Nb3Sn AND EFFECTS OF SATUBATIO¹
G. Ischenko, H. Adrian, S. Klaumiinzer, M. Leh-
mann, P. Muller, H. Neumuller, and W. Szym-
czak [Phys. Rev. Lett. 39, 43 (19VV)J.

Part of a very important sentence has been
omitted in the printed text. On page 44, second
column, the sixth line should read as follows:
. . .the decrease of T, due to the reduction of

atomic long-range order and an increase of T,
due to a growing number of vacancies and inter-
stitials. "

POSITION AND DYNAMICS OF Ag IONS IN SU-
PERIONIC AgI USING EXTENDED X-RAY AB-
SORPTION FINE STRUCTURE. J. B. Boyce,
T. M. Hayes, W. Stutius, and J. C. Mikkelsen,
Zr. [Phys. Rev. Lett. 38, 1362 (19VV)].

Qn page 1363, in the second paragraph, the
fifth sentence should read "They give rise to the
extensive structure between 1.6 and 3.8 A which
peaks at 2.56 A,

On page 1365 the fourth sentence should read:
".. . , in good agreement with the observed value
of 3.0+0.6."


